
LING-362

Introduction to
Natural Language Processing

Regular Expressions

Homework assignment - overview

We learned to:
• Take some input from the user (via command line)
• Manipulate the input (lower case, remove spaces)
• Check some things (palindrome?)
• Return output in some format:
 "This is a palindrome"
 True

➢ These are the makings of many/most NLP tool
workflows!

About task 2

Why is there an 'output type' argument?
 In many scenarios we'll want different output

formats
• Human readable output – good for inspecting results

• Machine readable output – useful to plug our script
into a bigger workflow as a module

Maybe better to think of this argument as:
• -f / --format: "sentence" or "yes_no"

Using the debugger

Using the debugger is a great way to see
what’s going on in your code
• If you need parameters: run -> edit configurations

• Then run -> debug will use those parameters

Quick review: tokenization

You can do very rudimentary tokenization with
.split():

>>> tokens = "A Santa lived as a devil at NASA".split(" ")
>>> print(tokens)

['A', 'Santa', 'lived', 'as', 'a', 'devil', 'at', 'NASA']

Quick review: tokenization

Better to use the tokenizer from the NLTK
package:

from nltk import word_tokenize
word_tokenize("Some words.")

Basic for loop

tweet = """This month you can catch a rare sight in pre-
dawn sky"""

tokenized = word_tokenize(tweet)
token_count = 0
for token in tokenized:

print(token)
token_count = token_count + 1

print("FINISHED PRINTING " + str(token_count) + " TOKENS")

Scope of for

How does tokenization work?

 In part:
• Lists of abbreviations (don't split e.g.)
• heuristics (capital →previous period was sentence end,

not an abbreviation?)

But most importantly:
• Patterns:
 Anything with a XXXX's: split the genitive s!
 Split/don't split hyphenated words

 Don't split all caps acronyms with punctuation: M*A*S*H

 How can we define these patterns?

If you already know RegEx

Feel free to try out this challenge instead:
• https://corpling.uis.georgetown.edu/etherpad/p/stemmer

Or, try it at home after class!

https://corpling.uis.georgetown.edu/etherpad/p/stemmer

Kleene star * and plus +

Basic operators:
Kleene star: *

• The previous character any number of times
• /pizza-*time/ matches:
 pizzatime, pizza-time, pizza--time, pizza---time …

Kleene plus: +
• The previous character, at least once
• /ba+/ matches the sheep language:
 ba, baa, baaa, baaaa …

• Does not match just a single 'b'

The dot wildcard: .

The . stands for any character
• /d.g/ matches: dig, dug, dog …

Can combine with other operators:
• /.*tion/ matches words in -tion

• /bread.*butter/ matches: bread & butter, bread n'
butter, breadbutter … (note: RegEX doesn't care about
words here!)

Optional stuff: ? and |

? marks a previous character as optional
• /colou?r/ matches color and colour

| marks alternatives:
• /cat|dog/ matches cat and dog

[] marks a range of possible characters:
• /b[iau]t/ matches bit, bat, but (not bot)

Combines with + and * :
• /[0-9]+/ a sequence of digits

Range expressions and negation

Some ranges can be abbreviated:
• [a-z] any lower case character

• [A-Z] any upper case character

• [A-Za-z] both

• [0-9] any digit

Negative ranges begin with ^:
• [^a-z] anything other than a lower case character

• [^aeiou] not a vowel

Applying operators to part of a string

You can use parentheses to apply an operator
to part of a string:
• /pupp(y|ies)/ finds puppy or puppies

• /puppy|ies/ finds puppy or ies

Applies to other operators too:
• /pup(py)?/ finds pup and puppy

You can nest brackets:
• /pup(p(y|ies))?/ finds pup, puppy, puppies

Regex Golf

A game – match entire string of these:
• afoot, foody, fool

Do not match: forest, afluent, pool, foos
Use as few characters as possible (par: 13)

? * . + [] (|)

Regex Golf

A game – match entire string of these:
• afoot, foody, fool

Do not match: forest, afluent, pool, foos
Use as few characters as possible (par: 13)

? * . + [] (|)

Some solutions:
• /a?foo[tdl]y?/ 12
• /a?foo(t|l|dy)/ 13
• /a?foo([tl]|dy)/ 14

Anchoring

You may want to find a regex only if it's the
beginning or end of a string:
• ^ - line begin

• $ - line end

Examples:
• /pup/ matches pup, but also pupil

• /^pup$/ matches exactly pup

• /^un.*/ words beginning with un

Escape sequences

Some characters can't be represented easily:
• What if we want to search for an actual '?' or '.'?

Escape operator characters with a backslash \
• /\./ finds periods

• What does this do? /U\.?S\.?(A\.?)?/

Other special characters:
• \n a new line symbol

• \t a tab character

Quick review: Basic regex operators

. []
+ (|)
* [^]
?

What do these do?
[A-Z].*(shire|cester|bury)

[Ii]-?[Pp]hones?

[^aeiou0-9]+

Reading for Wednesday

Regular Expressions:
• Jurafsky & Martin (2017), Section 2.1, in Canvas

(Readings folder)

• Mostly overlaps this session, but good to review

• Note any syntax or options we haven’t discussed

Using RegEx in Python

To use RegEx we have to import a module: re
Function: re.search()

import re

my_data = "brambular"

Let's go looking for sheep language…

Is there a bV syllable in there?
match1 = re.search("(b[aeiou])", my_data)

Using RegEx in Python

 If the match is successful, you'll get a Match
object, otherwise you get nothing, or None

You can check whether the result is the special
value None

Use is and is not to test for None:

if match1 is not None:
print(match1.group()) # This prints out the matching text

else:
print("No match found")

Using RegEx in Python

Can we print .group() if there's no match?

>>> import re
>>> match1 = re.search("(b[aeiou])","brambular")
>>> match1.group()
'bu'
>>> match2 = re.search("(b[aeiou])","bramblicious")
>>> match2.group()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'NoneType' object has no attribute 'group'

Matching groups and Python

Why use the round brackets here?
• match1 = re.search("(b[aeiou]).*", my_data)

Suppose you’re interested not only in whether
this is a sheep syllable

You want to know which syllable it was
Parts in round brackets get saved
We call these: matching groups

Matching groups and Python

Example: Let's say we want just the vowel:
>>> import re
>>> match1 = re.search("b([aeiou])","brambular")
>>> match1.group() # returns whole match
'bu'
>>> match1.group(1) # return contents of first (…)
'u'

Regex substitution

We can also replace what we find using re.sub()
• Suppose we're using brackets to represent syntax
• Can't have brackets in our string…
• re.sub() Works like .replace() – but with full regex power!

>>> # Let's get rid of brackets in the input
>>> data = "A sentence (with brackets)"
>>> data = re.sub(r'\(', '-LRB-', data)
>>> data = re.sub(r'\)', '-RRB-', data)
>>> data
'A sentence -LRB-with brackets-RRB-'

Excursus – raw strings

What does the 'r' do?

>>> data = re.sub(r'\(','-LRB-',data)

• Remember that '(' is a regex operator

• Has to be escaped with \(

• But Python also uses \ for escaping… to use a literal
backslash in the regex, we must write \\

• To search for a backslash in regex we'd write: \\\\

Excursus – raw strings

This is all very cumbersome
 If we want Python to treat backslashes literally

in our string and pass them on to regex, we
can use raw strings
• Prefixed by r
• These two are the same:
'\\(' # Send regex a backslash to mark (as literal
r'\(' # Same, but Python doesn't look inside

➢TLDR: put r before regex pattern strings

Regex substitution

We can grab stuff out of matches with \1, \2..
Note the raw string (otherwise: \\1, \\2)

Let's duplicate the b[aeiou] syllables!
>> word = "bombastic"
>> word = re.sub(r'(b[aeiou])', r'\1\1', word)
>> word
'bobombabastic'

The number \1 always refers to the first part of
the pattern in brackets (\2 is the second brackets,
if available, etc.) – like group(1) etc.

Now tokenization for real

How does NLTK's tokenizer work?
• Actually you can almost read the code right now!

• Here's the important stuff

nltk.tokenize.treebank (adapted)

Note the use of def some_function(arg1,arg2,…):

import re

def tokenize(text, CONTRACTIONS2, CONTRACTIONS3):

#starting quotes
text = re.sub(r'^\"', r'``', text)
text = re.sub(r'(``)', r' \1 ', text)
text = re.sub(r'([(\[{<])"', r'\1 `` ', text)

nltk.tokenize.treebank (adapted)

#punctuation
text = re.sub(r'([:,])([^\d])', r' \1 \2', text)
text = re.sub(r'([:,])$', r' \1 ', text)
... 6 more

#parentheses, brackets, etc.
text = re.sub(r'([\]\[\(\)\{\}\<\>])', r' \1 ', text)
text = re.sub(r'--', r' -- ', text)

#add extra space to make things easier
text = " " + text + " "

nltk.tokenize.treebank (adapted)

Ending quotes
text = re.sub(r'"', " '' ", text)
…

Contractions
text = re.sub(r"([^'])('[sS]|'[mM]|'[dD]|') ", r"\1 \2 ", text)
text = re.sub(r"([^'])('ll|'LL|'re|'RE|'ve|'VE|n't|N'T) ", r"\1 \2",
text)

nltk.tokenize.treebank (adapted)

for regexp in CONTRACTIONS2:
text = re.sub(regexp, r' \1 \2 ', text)

for regexp in CONTRACTIONS3:
text = re.sub(regexp, r' \1 \2 ', text)

return text.split()

Not easy to follow, but…

This is actual working code for entry level
tokenization

 Just uses RegEx!!
Full code here:

http://www.nltk.org/_modules/nltk/tokenize/treebank.html

➢More professional options out there too
(notably Stanza, SpaCy, the TreeTagger
tokenizer in Perl or in Python here)

➢ Special tools for more challenging languages

http://www.nltk.org/_modules/nltk/tokenize/treebank.html
https://github.com/amir-zeldes/HebPipe/blob/master/lib/whitespace_tokenize.py

Exercise: Phone number scraper

Download phones.py from Canvas
• Fix the script so it finds all phone numbers in the text

• Some of the steps have been done for you

• Bonus question: can you print out all the numbers in a
uniform format?

Homework

There is a new homework script to practice
RegEx in Canvas (pig_latin.py), due Monday

➢Instructions are in the script file/Canvas assignment

