
LING-362

Introduction to
Natural Language Processing

Finite State Methods (ctd.)

Python Coding Studio today!

 Join guWeCode on September 29th for an intro
lesson on Python!

 If you are a beginner or just want a refresher, this
is a great opportunity to sharpen your Python
skills and meet others interested in coding. The
session will be from 5-6:30pm in St. Mary's Room
120. We hope to see you there!

RSVP: https://forms.gle/cuhoPzt6TqMeUaSm8

https://forms.gle/cuhoPzt6TqMeUaSm8

GU CS grad research
Friday, October 1 @1:30 PM ,
ZOOM: https://georgetown.zoom.us/j/94352180689

 Yang, Eugene and Lewis, David D. and Frieder, Ophir, "Heuristic Stopping
Rules For Technology-Assisted Review", Proceedings of the ACM
Symposium on Document Engineering 2021 (DocEng '21) (2021)

 Yang, Eugene and Lewis, David D. and Frieder, Ophir, "On Minimizing Cost
in Legal Document Review Workflows", Proceedings of the ACM
Symposium on Document Engineering 2021 (DocEng '21) (2021)

 Wang, Yanchen and Singh, Lisa, "Analyzing the impact of missing values
and selection bias on fairness", Int J Data Sci Anal 12, 101–119 (2021).

 Kornraphop Kawintiranon, Lisa Singh. Knowledge Enhanced Masked
Language Model for Stance Detection. Proceedings of the 2021
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL-HLT
2021).

https://georgetown.zoom.us/j/94352180689

Finite state automata

Definition:
• FSA ≡ {Q, q0, F, Σ, δ(q,i)}

Where:
• Q is a set of possible states qi… qn

• q0 is the starting state within Q

• F is a subset of end states within Q

• Σ is the alphabet

• δ(q,i) is a set of allowable transitions from state q given
input i

Automata as graphs

States indicate steps in the derivation
Morphology as transitions between lexicon

items
➢What about linguistic order of processes?

➢Underlying and surface forms? (is -iest a suffix?)

Numerals
Adapted from Karttunen (2004)

import re, exrex

one_to_nine = "(one|two|three|four|five|six|seven|eight|nine)"

teen_ten = "(thir|fif|six|seven|eigh|nine)"

teens = f"(ten|eleven|twelve|(({teen_ten}|four)teen))"

ten_stem = f"({teen_ten}|twen|for)ty"

tens = f"({ten_stem}(-{one_to_nine})?)"

one_to_ninety_nine = f"^({one_to_nine}|{teens}|{tens})$"

Numerals

 Generate forms:
max_forms = 10

print(f"Generating {max_forms} random forms:\n")

for i in range(max_forms): # range generates numbers up to its argument

output = exrex.getone(one_to_ninety_nine)

print(output)

Output

• four

• two

• eight

• twenty

• forty

• twenty-five

• twelve

• eleven

• forty-one

• twenty-two

NLU vs NLG

 We can also recognize or reject numbers:

Test inputs
print("\nTesting inputs:\n")
inputs = ["ten","twenty-three","eleventy","fifty-ten"]

for word in inputs:
if re.search(one_to_ninety_nine,word) is None:

print("input " + word + " does not pass validation")
else:

print("input " + word + " is valid")

Output

Testing inputs:

• input ten is valid

• input twenty-three is valid

• input eleventy does not pass validation

• input fifty-ten does not pass validation

From forms to analyses

So far we’ve been working to generate all
possible forms in a grammar, but:
• In NLP we usually want to analyze some natural

language data: text → analysis

• In NLG we want to create English realizations of
underlying models: analysis → text

Better output

FSAs give a simple kind of output: Booleans
Either an input IS part of the language or it

ISN’T:
• grammatical == True / False

 Implementation in Python re:
• if match is not None:

…

Getting output
 Our automaton goes over the input, symbol by symbol,

and tries to find a valid set of states

 We can think of this as reading a tape with letters:

 But there’s no place to give output…

 We need another tape!

Finite State Transducers (FSTs)

A Finite State Transducer is a Finite Automaton
with two tapes: input and output
(also: lower and upper)

♥♥★

Formal definition

 FST ≡ {Q, q0, F, Σ, Δ, δ(q,i), σ(q,i)}
Where:

• Q is a set of possible states qi… qn

• q0 is the starting state within Q

• F is a subset of end states within Q

• Σ is the input alphabet

• Δ is the output alphabet

• δ(q,i) is a set of allowable transitions from state q given
input i, mapping to some states in Q

• σ(q,i) is a set of allowable outputs given state q and input i

Transducers as graphs

FSTs can be expressed as graphs with symbol
translations on the transitions

Suppose we wanted to translate Spanish gato
into English cat:

Transducers as analyzers

The same idea holds for morphological
analysis

Translate a word into an analysis:

Regular Relations

A regular relation describes:
• for every state change in a regular automaton

• a finite set of possible outputs

Regular relations are like bilingual dictionaries
for two regular languages
• They allow inversion (we can go from L2 <> L1)

• Allow composition (L1 > L2, L2 > L3 → L1 > L3)

What are the alphabets for each tape?

On the one side we have real words:
• cats

• panicked

• tries

On the other side?
• …

Where do we store all these words and
symbols?

Can we do this with re.sub?

Maybe, but…
• For real-world systems we will not want to write 10K

character regex substitutions

• More convenient to store words and categories in a
machine readable lexicon

• re.sub is a bit different from textbooks FSTs:
 Allows capturing groups

 Inversion property not guaranteed

• Python re is also not actually that efficient… (esp.
generation from nulls or ‘epsilons’)

Enter the .lexc format!

Developed by Xerox/AT&T for XFST
De-facto standard in most commercial FSMs
Used for morphological analysis, date/other

pattern recognizers, template generation…

Basic idea:
• Define symbols and categories
• Cascade through a set of continuation categories
• Output analyses as we go along
• Invert for generation

Enter the .lexc format!
Multichar_Symbols +N +Sg +Pl

LEXICON Root

Noun ;

LEXICON Noun

cat Ninf;

LEXICON Ninf

+N+Sg:0 #;
+N+Pl:s #;

Now we can “translate”
 Download from Canvas (Code > fsm):

• cat.lexc

• run_cat_lexc.py, fst.py

> python run_cat_lexc.py -h

usage: run_cat_lexc.py [-h] lexc inputfile

positional arguments:
lexc the .lexc file
inputfile an input text file consisting of the words

to analyze, one per line

optional arguments:
-h, --help show this help message and exit

Now we can “translate”
p = argparse.ArgumentParser()
p.add_argument("lexc", help="the .lexc file")
p.add_argument("inputfile", help="an input text file")
options = p.parse_args()

compile transducer
transducer = generate_table(options.lexc)
fst = FST(transducer)
fst.invert() # Analysis, not generation

with open(options.inputfile, 'r', encoding="utf-8") as f:
for line in f:

print(fst.transduce(line.strip()))

Now we can “translate”

 Inverted (analysis)

cat
->cat+N+Sg

cats
->cat+N+Pl

 Uninverted (generation)

cat+N+Sg
->cat

cat+N+Pl
->cats

A more complex lexicon

Download english1.lexc from Canvas
Some more words to play with:

Multichar_Symbols +N +V +PastPart +Past +PresPart +3P
+Sg +Pl

LEXICON Root

Noun ;

Verb ;

A more complex lexicon
LEXICON Noun

cat Ninf;
city Ninf;
fox Ninf;
panic Ninf;
try Ninf;
watch Ninf;

LEXICON Verb

beg Vinf;
fox Vinf;
make Vinf;
panic Vinf;
try Vinf;
watch Vinf;

A more complex lexicon
LEXICON Ninf

+N+Sg:0 #;
+N+Pl:^s #;

LEXICON Vinf

+V:0 #;
+V+3P+Sg:^s #;
+V+Past:^ed #;
+V+PastPart:^ed #;
+V+PresPart:^ing #;

Generating words on either tape

transducer = generate_table(options.lexc)
fst = FST(transducer)

print(fst.lower_words(n=3))

try+N+Pl
try+N+Pl
fox+N+Sg

Generating words on either tape

transducer = generate_table(options.lexc)
fst = FST(transducer)

print(fst.upper_words(n=3))

watch^s
try^ed
make^ing

Some problems

We’ll need some adjustment rules to fix these:
watch^s

try^ed

make^ing

These rules should apply at the morpheme
juncture (^ symbol used in our lexicon)

Replacement rules
 We can use re.sub to clean up our outputs in a separate function:

def clean_word(word):

e-deletion: make^ing -> mak^ing
cleaned = re.sub(r'e\^(ed|ing)', r'^\1', word)

e-insertion: watch^s -> watche^s
cleaned = re.sub(r'([szx]|ch|sh)\^s', r'\1^s', cleaned)

Remove remaining "^"
cleaned = re.sub(r'\^', '', cleaned)

return cleaned

Combining everything
generate clean words from analyses
print("\nGenerating clean word forms:\n" + "="*20)
to_generate = open(options.inputfile, encoding="utf-8").read()
to_generate = to_generate.strip().split("\n")
for analysis in to_generate:

generated = fst.transduce(analysis,with_input=False)
generated = clean_word(generated)
print(generated)

cats
watches
making

Epsilon insertion

Note that analysis doesn’t quite work, since we
expect inputs like “cat^s”

Pure C++ FSMs can consider producing such
symbols from empty input, also called ‘epsilon’

For our pure Python code we can do this:

analyzed = fst.transduce(word,with_input=False)

re.sub cannot invert caret deletion (epsilon insertion)
if analyzed=="" and re.search(r'(s|ed|ing)$',word) is not None:

with_caret = re.sub(r'(s|ed|ing)$',r'^\1',word)
analyzed = fst.transduce(with_caret)

Exercise 1

Add two y-replacement rules to fix these
outputs:
try+V+Past -> tryed

city+N+Pl -> citys

Exercise 2

Add a K insertion rule to fix these outputs:
panicing

paniced

Home work – Japanese verbs

For next Wednesday we will write a .lexc file
and a python script for Japanese verb forms

We will practice on four verbs from the two
major conjugation classes:
• -eru/-iru verbs: taberu 'eat', nobiru 'stretch'

• -u verbs: yomu 'read', hanasu 'speak'

Home work – Japanese verbs

We will model the causative and passive
inflections:
• -iru/-eru verbs:
 Drop 'ru'

 Add saseru (causative) or rareru (passive)

 or both: saserareru (be made to do something)

 tabesaseru: make someone eat; nobirareru: be stretched

• -u verbs:
 Drop 'u'

 Add aseru (causative) or areru (passive)

 or both: aserareru

 yomaserareru: be made to read

Home work – Japanese verbs

 Produce a .lexc file that:
• Defines the verb stems in each class (you will need two paths of

verbal endings)

• Defines the necessary suffixes (which differ in each class)

• Combines the suffixes correctly with each verb type

 In a separate python script, use the fst’s transduce
command to get analyses for the provided Japanese
words file (submit both .lexc and .py files!)

 You should get all 1+3 possible inflected forms for all 4
verbs (16 forms):

• taberu, tabesaseru, taberareru, tabesaserareru (be made to eat)

• …

Home work – Japanese verbs

Bonus: [1pt each, total 2pts]
• Add a gloss to each word in the .lexc file so your

analysis also outputs a translation:
 yomaseru -> read+V+Caus

• Add the honorific suffix -masu to the base form
according to this list, and the test forms to the .txt file:
 Type 1: (use a symbol +Hon)
 yomimasu

 hanashimasu <- note: si is pronounced shi in Japanese - use re.sub!

 Type 2: (use a symbol +Hon)
 tabemasu

 nobimasu

FSM: Going further
 More on XFST syntax: in Canvas
 XTAG English Morphology

• Upenn project for a large coverage English grammar (in TAG,
backed by FSM)

• http://www.cis.upenn.edu/~xtag/swrelease.html
 EMOR (and SMOR for German):

• http://www.cis.uni-muenchen.de/~schmid/tools/SFST/
 PCKIMMO – English FSM (and Japanese, Finnish)

• http://www.sil.org/pckimmo
 morpha/morphg – English grammar

• http://users.sussex.ac.uk/~johnca/morph.html
• Version ported to Java:

https://github.com/knowitall/morpha

http://www.cis.upenn.edu/~xtag/swrelease.html
http://www.cis.uni-muenchen.de/~schmid/tools/SFST/
http://www.sil.org/pckimmo
http://users.sussex.ac.uk/~johnca/morph.html
https://github.com/knowitall/morpha

