
LING-362

Introduction to
Natural Language Processing

Finite State Methods – review

Transducers as analyzers

FSMs can Translate a word into an analysis and
back:

A complex lexicon for English
LEXICON Noun

cat Ninf;
city Ninf;
fox Ninf;
panic Ninf;
try Ninf;
watch Ninf;

LEXICON Verb

beg Vinf;
fox Vinf;
make Vinf;
panic Vinf;
try Vinf;
watch Vinf;

A complex lexicon for English
LEXICON Ninf

+N+Sg:0 #;
+N+Pl:^s #;

LEXICON Vinf

+V:0 #;
+V+3P+Sg:^s #;
+V+Past:^ed #;
+V+PastPart:^ed #;
+V+PresPart:^ing #;

Generating words on either tape

transducer = generate_table(options.lexc)
fst = FST(transducer)

print(fst.lower_words(n=3))

try+N+Pl
try+N+Pl
fox+N+Sg

Generating words on either tape

transducer = generate_table(options.lexc)
fst = FST(transducer)

print(fst.upper_words(n=3))

watch^s
try^ed
make^ing

Replacement rules
 We can use re.sub to clean up our outputs in a separate function:

def clean_word(word):

e-deletion: make^ing -> mak^ing
cleaned = re.sub(r'e\^(ed|ing)', r'^\1', word)

e-insertion: watch^s -> watche^s
cleaned = re.sub(r'([szx]|ch|sh)\^s', r'\1^s', cleaned)

Remove remaining "^"
cleaned = re.sub(r'\^', '', cleaned)

return cleaned

Combining everything
generate clean words from analyses
print("\nGenerating clean word forms:\n" + "="*20)
to_generate = open(options.inputfile, encoding="utf-8").read()
to_generate = to_generate.strip().split("\n")
for analysis in to_generate:

generated = fst.transduce(analysis,with_input=False)
generated = clean_word(generated)
print(generated)

cats
watches
making

Epsilon insertion

Note that analysis doesn’t quite work, since we
expect inputs like “cat^s”

C++ FSMs can consider producing such symbols
from empty input, also called ‘epsilon’

For our pure Python code we can do this:

analyzed = fst.transduce(word,with_input=False)

re.sub cannot invert caret deletion (epsilon insertion)
if analyzed=="" and re.search(r'(s|ed|ing)$',word) is not None:

with_caret = re.sub(r'(s|ed|ing)$',r'^\1',word)
analyzed = fst.transduce(with_caret)

FSM: Going further
 More on XFST syntax: in Canvas
 XTAG English Morphology

• Upenn project for a large coverage English grammar (in TAG,
backed by FSM)

• http://www.cis.upenn.edu/~xtag/swrelease.html
 EMOR (and SMOR for German):

• http://www.cis.uni-muenchen.de/~schmid/tools/SFST/
 PCKIMMO – English FSM (and Japanese, Finnish)

• http://www.sil.org/pckimmo
 morpha/morphg – English grammar

• http://users.sussex.ac.uk/~johnca/morph.html
• Version ported to Java:

https://github.com/knowitall/morpha

http://www.cis.upenn.edu/~xtag/swrelease.html
http://www.cis.uni-muenchen.de/~schmid/tools/SFST/
http://www.sil.org/pckimmo
http://users.sussex.ac.uk/~johnca/morph.html
https://github.com/knowitall/morpha

Practicing this

The best way to learn how to build a FSM…
• Take some language you don’t know too well

• Choose some example words to analyze

• Compile a grammar that works!

Today we will do this in a ‘hackathon’ format
• Collaborative work

• Get help, discuss and coordinate

• The surprise language will be…

LING-362

Introduction to
Natural Language Processing

ⲡⲙⲁ ⲛ̄ⲧⲙ︤ⲛ︥︦ⲧⲥϩⲁⲓ ⲛ̄ⲧⲙⲟⲣⲫⲟⲗⲟⲅⲓⲁ ⲛ̄ⲧⲙ︤ⲛ︥︦ⲧⲣⲙ̄ⲛ̄ⲕⲏⲙⲉ
Coptic Morphology Workshop

Coptic?

 Last stage of Ancient Egyptian Language (starting 2nd Century)
• Hellenistic period (1st millennium)

• Longest continuous documentation

• Strong contact with Greek

• Written in Greek letters:

Coptische Dialects

Sample text (simplified)

a-u-joo-s etbe-t-makaria sara t-parthenos
PAST-they-say-her about-the-blessed Sarah the-virgin

 je-a-s-r-se n-rompe e-s-uHh m-pe-tpe m-p-iero
that-PAST-she-do-60 of-year while-she-dwell of-the-top of-the-river

mpe-s-ke-rat-s ebol eneh e-nau e-p-iero
NGPAST-she-set-foot-her outward ever to-see to-the-river

Coptic morphology – the facts
 Nominal bound groups

• Possible prepositions:
 n ‘of’, etbe ‘about’, hn ‘in’, e ‘to’, na ‘for’

• Usually an article:
 p (masc), t (fem), n (plural)

• Always a noun:
 shime ‘woman’
 rOme ‘man’
 diabolos ‘devil’
 Hi ‘house’
 ma ‘place’
 rat ‘foot’

• Suffix possessive possible: -f ‘his’, -s ‘her’ (then no article)
 rat-s ‘her foot’

Coptic morphology – the facts
 Verbal bound groups

• Possible conjugation base:
 a ‘PAST’, mpe ‘NEG-PAST’, Sa ‘AOR’, me ‘NEG-AOR’, n ‘CONJ’

• Always a subject:
 Pronoun: i (1), k (2), f (3m), s (3f), n (1pl), tetn (2pl), u (3pl)
 If no conjugation base: ti (1), se (3pl)

• Always a verb:
 sOtp ‘choose’
 kOt ‘build’
 mooSe ‘walk’
 jO ‘say’ (before object: joo)

• Possibly an object nominal group
 Or pronoun: 1sg object is t, 2pl is tHutn, otherwise same as subject

with base – a-f-sotp-t “he chose me”

Coptic – ponological rules

Assimilations:
 In articles and prepositions, n -> m before labial

(b, m, p): hn + p-Hi = hm-p-Hi ‘in the house’
 k becomes g after n: n+k+sOtm -> ngsOtm ‘and you hear’

Epenthesis:
 m+t -> mnt: uOm + t = uOmnt ‘eat me’

Verbs are shortened before objects:
 a-f-sOtp – he chose
 a-f-sotp-f – he chose him
 a-f-setp-p-rOme – he chose the man

Articles are lengthened before clusters:
 t-me – the truth
 te-shime – the woman (note: sh = [s+h])

Ma‘at ‘Truth’

Some tips

Lexicon contains analysis:form pairs:
• +N+Pl:^s #;

For Coptic we can use glosses as analyses:
• LEXICON NounM

man:rOme #;
…

• LEXICON ConjugationBase
PST+:a SubjPron;

Links

 Sign up for what you’re doing right now here:
• https://corpling.uis.georgetown.edu/ethercalc/coptic

 We will build the lexicon file here:
• https://corpling.uis.georgetown.edu/etherpad/p/coptic.lexc

 Phonological rules here:
• https://corpling.uis.georgetown.edu/etherpad/p/coptic.py

 Test cases here: (we want to catch all of them!)
• https://corpling.uis.georgetown.edu/ethercalc/coptic_tests

https://corpling.uis.georgetown.edu/ethercalc/coptic
https://corpling.uis.georgetown.edu/etherpad/p/coptic.lexc
https://corpling.uis.georgetown.edu/etherpad/p/coptic.py
https://corpling.uis.georgetown.edu/ethercalc/coptic_tests

Home work – Japanese verbs

For Wednesday Friday we will write a .lexc file
and a python script for Japanese verb forms

We will practice on four verbs from the two
major conjugation classes:
• -eru/-iru verbs: taberu 'eat', nobiru 'stretch'

• -u verbs: yomu 'read', hanasu 'speak'

Home work – Japanese verbs

We will model the causative and passive
inflections:
• -iru/-eru verbs:
 Drop 'ru'

 Add saseru (causative) or rareru (passive)

 or both: saserareru (be made to do something)

 tabesaseru: make someone eat; nobirareru: be stretched

• -u verbs:
 Drop 'u'

 Add aseru (causative) or areru (passive)

 or both: aserareru

 yomaserareru: be made to read

Home work – Japanese verbs

 Produce a .lexc file that:
• Defines the verb stems in each class (you will need two paths of

verbal endings)

• Defines the necessary suffixes (which differ in each class)

• Combines the suffixes correctly with each verb type

 In a separate python script, use the fst’s transduce
command to get analyses for the provided Japanese
words file (submit both .lexc and .py files!)

 You should get all 1+3 possible inflected forms for all 4
verbs (16 forms):

• taberu, tabesaseru, taberareru, tabesaserareru (be made to eat)

• …

Home work – Japanese verbs

Bonus: [1pt each, total 2pts]
• Add a gloss to each word in the .lexc file so your

analysis also outputs a translation:
 yomaseru -> read+V+Caus

• Add the honorific suffix -masu to the base form
according to this list, and the test forms to the .txt file:
 Type 1: (use a symbol +Hon)
 yomimasu

 hanashimasu <- note: si is pronounced shi in Japanese - use re.sub!

 Type 2: (use a symbol +Hon)
 tabemasu

 nobimasu

