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Introduction to 
Natural Language Processing

Viterbi (ctd.) and Sequence Labeling



HMMs

An HMM is really a weighted FSA
The HMM definition comprises:

• V = v1 … vV # for us: English words

• Q = q1, … qN (q0,qF) # for us: possible tags

• A = a11,a12 … an1 … ann # transition prob. matrix

• O = <o1, …, oT> # sentence to tag

• B = bi(ot) # prob. of ot given qi

# a.k.a ‘emission’ probs.

2



HMMs – formal definition

Transition probabilities (A): 
(adapted from Jurafsky & Martin)

P(VB|TO) = 0.83 (rows give the condition)

Q0 VB TO NN QF

Q0 -- 0.0004 0.0064 0.0365 0

VB -- 0.0038 0.035 0.047 0.012

TO -- 0.83 0 0.00047 0.00079

NN -- 0.0040 0.016 0.087 0.23

QF -- -- -- -- --
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HMMs – formal definition

Emission probabilities (B): 
(adapted from Jurafsky & Martin 2008)

P(see|VB) = 0.12 (assuming this is VB, chance to get 'see')

I want to see

VB 0 0.0093 0 0.12

TO 0 0 0.99 0

NN 0 0.000054 0 0.000007
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Viterbi code - overview

Prepare emission + transition dictionaries 
(2 level!)

Prepare a list to contain each word we see
Store a dictionary for each word: (Ntags*Ntags loop)

• Probability of each prev-tag + tag at this word, based 
on 3 things:
 p_so_far * transition_p * emission_p

Choose best option, store how we got there
(what was best prev-tag – the backpointer)



Building block: defaultdict

Uses a default value if key is unknown:
• Should be initializable with a data type or function 

returning some value

from collections import defaultdict

my_dict = defaultdict(int)
print(my_dict["puppy"])

0
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Building block: defaultdict

This is a little cumbersome, so a more Pythonic
way is this to use the anonymous function 
lambda:

my_dict = defaultdict(lambda: 0.5)

Same as:
# Suppose half_returner is a function, always returns 0.5
def half_returner():

return 0.5
my_dict = defaultdict(half_returner)
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Building block: defaultdict

And we can even make a defaultdict of 
defaultdicts:
• x = defaultdict(lambda: defaultdict(lambda: 0.00000001))

 Now x is a dictionary: 
• which defaults unknown entries to dictionaries
 which default unknown entries to 0.0000001..

➢ So what is the value of:
x["puppy"]["the"] ?
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Viterbi - implementation

tagging/viterbi_simple.py
 Imports and states:

from collections import defaultdict

# Tagger states Q (the tag set)
states = (',', 'CC', 'CD', 'DT', 'EX', 'IN', 'JJ', 'JJR', 'JJS', 'LS', 'MD', 'NN', 'NNP', 'NNPS', 
'NNS', 'PDT', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS', 'SENT', 'SYM', 'TO', 'UH', 'VB', 'VBD', 
'VBG', 'VBP', 'VBZ', 'WDT', 'WP', 'WRB')



Viterbi – starting probabilities

Training data:
# q0 probabilities: 
# can't use prior tags to estimate initial state
start_p = {

',': 0.006,
'CC': 0.0451,
'CD': 0.0158,
'DT': 0.1365,
'EX': 0.0102,
…

}



Viterbi – transitional probabilities

Training data for transition is a dictionary:
trans_p ={}

We could set the transition probabilities by 
assigning nested dictionaries:

trans_p['DT'] = {'JJ': 0.0208, 'NN': 0.0397 …}

But these would be regular dictionaries, no 
default value for missing keys



Viterbi - transitional probabilities

A better way:
trans_p = 
defaultdict(lambda: defaultdict(lambda: 0.00000001))

# Don’t make a new dictionary, 
# just update the defaultdict with new dictionary values

trans_p['DT'].update({'JJ': 0.0208, 'NN': 0.0397, …}

trans_p['IN'].update({',': 0.0015, 'CD': 0.0016, …}



Viterbi – emission probabilities 

emit_p = defaultdict(lambda: defaultdict(lambda: 
0.00000001))

emit_p['VB']['want'] = 0.0093
emit_p['VB']['fly'] = 0.0001

…



The algorithm 1/3
def viterbi(obs, states, start_p, trans_p, emit_p):

path = [{}] # The Viterbi path is a list of dicts mapping tok+tag to probability

# Get initial probabilities for each tag given first token (obs[0])
for tag in states:

path[0][tag] = start_p[tag]*emit_p[tag][obs[0]]



The algorithm 2/3
# Get subsequent probabilities for obs[t] where t > 0 (tokens after the first)
for tok_num in range(1, len(obs)):

path.append({})
backpointer = {}
for tag in states:

max_prob = 0.0
probs = []
for prev_tag in states:

probs.append(path[tok_num - 1][prev_tag] * trans_p[prev_tag][tag] * emit_p[tag][obs[tok_num]])
if prob > max_prob:

max_prob = prob
best_prev = prev_tag

path[tok_num][tag] = max_prob
backpointer[tag] = best_prev
backpath.append(backpointer)



The algorithm 3/3
optimal_list = []

# Go through each token position in path;
# Each token position is now a dictionary 
# of tags to continuation probabilities given previous context
current_best_tag = max(path[-1], key=path[-1].get)
optimal_list.append(current_best_tag)
backpath.reverse()
for backpointer in backpath:

optimal_list.append(backpointer[current_best_tag])
current_best_tag = backpointer[current_best_tag]

optimal_list.reverse()

# The highest probability
max_total_prob = max(path[-1].values())
print('Best sequence: ' + ' '.join(optimal_list) + ' with highest probability of ' + 
str(float(max_total_prob)))



start_p
* 
emit_p

Viterbi algorithm

I want to fly

PRP PRP PRP PRP

VBP VBP VBP VBP

TO TO TO TO

VB VB VB VB

trans_p * 
emit_p * 
prev_p



Backtrace step

I want to fly

PRP PRP PRP PRP

VBP VBP VBP VBP

TO TO TO TO

VB VB VB VB

Best 
outcome



Group work

 Let’s try to trip up and then fix our tagger:
• Split up into groups
• Pick a sentence – not too long, about 4-7 words
➢Does the tagger work right?
➢How could you fix it? 
➢Let each member try a minor variation on this sentence – can the 

fixes work without breaking other variations?

• Add emission probabilities for new words
 Put them here:

https://corpling.uis.georgetown.edu/etherpad/p/viterbi
 You can make them up or use a corpus: 

https://corpling.uis.georgetown.edu/cqp/
 The TAs and I will provide guidance

https://corpling.uis.georgetown.edu/etherpad/p/viterbi
https://corpling.uis.georgetown.edu/cqp/


From tagging to sequences

Part of speech labeling is a classic example of 
token-wise tagging:
• Input is a sequence of words (tokens)
• Each word receives exactly one category
• There are usually no other features except words to 

decide the correct tag

But not all labeling tasks are like this!
We could tag more complex sequences and 

with more input features!



Sequence labeling – NER

A typical example is Named Entity Recognition
Not every token is labeled:

PER -- ORG --

• Kim visited Intel .

Labels come in spans:

PER PER -- ORG ORG

• Kim Jung visited Intel Corp.



How many spans?

 If we only use labels like PER and ORG, we can 
treat this as an HMM/Viterbi problem
• Tags: PER, ORG, .., -- (‘--’ is a tag)

• Input: Kim, Jung, visited …

• Emission probabilities: P(Kim|PER), P(Intel|ORG)

• Transition probabilities: PER → --→ ORG → ORG

But how can we tell how many ORGs we have?
• Intel Corp. ORG ORG → 1 org., 2 tokens

• IBM  Google lawsuit ORG ORG --→ 2 orgs!!



Solution: BIO encoding

We add more label types to indicate Beginning 
and Inside of entities:
• IBM B-ORG

• Corp. I-ORG

• hired O

• Kim B-PER

• Jung I-PER

The label O is like our ‘--’: Outside any entity



Solution: BIO encoding

Labels impose restrictions on transitions:
• P(B-PER → I-PER) > p(I-PER → B-PER)

• P(O → I-PER)  = 0 (why?)

We can still use HMM/Viterbi…
But is just one emission probability enough?

• P(PER|Kim) …

• What about other features?



Just one emission?

Many things influence the probability that a 
word is a person/company name:
• Capitalization (very good at finding ‘O’)

• All caps? (ORG)

• Word length

• Knowledge bases (is this in a list of company
names? Place names?)

• …

Viterbi can’t handle this…



Using multiple features

 Ideally our input should look like this:
• IBM NNP allcaps … B-ORG

• Corp. NNP title … I-ORG

• hired VBD lower … O

• Kim NNP title … B-PER

• Jung NNP title … I-PER



Decoding - CRF

Efficient decoding over multiple features can be 
done using Conditional Random Fields (CRF)

We do not have time to implement CRF in this 
course

 For our purposes, a Linear Chain CRF is 
• a sequence label decoder equivalent to a Viterbi decoder 
• using multiple input features 
• and arbitrary functions for features over the sequence

Advanced reading: Sutton & McCallum (2006) in 
Canvas (optional!)



What are the probabilities?

For smaller datasets, CRF taggers can learn 
joint discrete feature value distributions:
• Python library: 
 pip install python-crfsuite (Okazaki 2007)

• Good off the shelf CRF tagger:
 Marmot (Müller et al. 2013), 

http://cistern.cis.lmu.de/marmot/

• CRF NER tagging example in Canvas:
 ner/crf_entities.py

http://cistern.cis.lmu.de/marmot/


Neural sequence labeling

Since features can be anything…
For larger datasets, we can use neural 

networks
Word embeddings as features



Popular libraries

Flair (Akbik et al. 2019)

AllenNLP (Gardner et al. 2018)

NCRF++ (Yang & Zhang 2018)



Example – Flair (Akbik et al. 2019)

from flair.models import SequenceTagger

# pretrained NER tagger
tagger = SequenceTagger.load('ner')

sentence = Sentence('George Washington went to Washington .')

# predict NER tags
tagger.predict(sentence)

# print sentence with predicted tags
print(sentence.to_tagged_string())

George <B-PER> Washington <E-PER> went to Washington <S-LOC> .



Homework – for Nov 17
 Turn viterby_simple.py into a trainable tagger!

• Split the training filein data/ en_gum-ud-train.conllu into a list of lines.
• For each line that contains a tab ("\t"), split it by tab to collect the word 

(second column) and PTB part of speech tag (5th column, i.e. [4])
• Use a dictionary to track frequencies for:
 Each word as each tag
 Each transition from the last tag to the next tag
 Divide by total number of words to make probabilities and put them into the same 

nested dictionary structure used by the viterby tagger.

• Bonus: Now read the file en_gum-ud-dev.conllu to get test sentences 
(sentences are separated by blank lines)
 Collect the words in each sentence from the 2nd column (column [1])
 Save the correct POS tags from the 5th column as well
 Modify viterbi() to return the optimal list of tags
 Get tags for each sentence using viterbi and check: for how many tokens did the tagger 

find the right solution?

• Bonus question: for how many sentences is the tagger 100% correct?


