
LING-362

Introduction to
Natural Language Processing

Python & NLTK basics

Talks etc.

Sep. 10 – me & co. – Digital Classicist Seminar,
Named Entities in Coptic Antiquity

Sep. 24:
• Gemma Boleda (UPF Barcelona),

Computational Semantics, GU Linguistics Speaker
Series

• 19th Semi-Annual GU-CS Graduate Research – 3/4 talks
with CL/IR topics:
https://www.georgetown.edu/event/the-19th-semi-
annual-gu-cs-graduate-research-presentation-days-
session-i/

https://www.digitalclassicist.org/wip/wip2021.html
https://www.georgetown.edu/event/the-19th-semi-annual-gu-cs-graduate-research-presentation-days-session-i/

Discussion – Bar Hillel's pen

 Is Bar Hillel right?
Can context ever get pen right?

• Does perfect MT require perfect AI?

• Can we get much better even without it?

How right is Bar Hillel today?

✗

✗

✗

✗

✗

✗

How right was Bar Hillel last year?

✗

✗

✗

✗

✗

✓

Three(!) years ago:

Today

Python basics
• Doing math

• Dealing with variables

• Processing strings of text

• Starting our very first program

NLTK
• Our first Class of objects

• Some neat ready-made methods

Python basics

Programming is all about computing:
• Getting some values from somewhere

• Storing them in variables

• Doing some calculations

• Outputting the result

First example: doing math

Starting the Python console

Python is an 'interpreted' language
• Commands are read one at a time (from script / CLI)

• No compilation

• Slower than (some) compiled languages

• Easier to modify / debug

• Cross platform (only interpreter OS-specific)

You can start the interpreter from the
command line (CLI, terminal) by running
python (*or python3 etc.)

Time to ask Python some questions

Assigning from variables:
>>> b = 8 * a
>>> b
24
>>> (a + a) / 4 # Normal – in Python 3
1.5
>>> (a + a) // 4 # What’s this?
1
>>> (a + a) % 4 # The modulo '%' gives us the remainder
2

Time to ask Python some questions

Basic math:
>>> 5 * 8

40

>>> a = 3 # assign the variable 'a' the value 3

>>> a * a

9

>>> a ** 2 # use ** for powers

9

A word about data types

 Python treats numbers like 3, 4 (and our a) as integers
 Calculations with integers normally result in integers

(no fractions)
 We can turn a variable into a float explicitly

>>> a = 3

>>> a = float(a)

>>> a

3.0

>>> (a + a) // 4

1.5

>>> (a + a) / 4 # This now works in Python 2 and 3

1.5

A word about data types

We can convert integers to strings:
>>> a = 4

>>> a

4

>>> b = str(a)

>>> b

'4'

A word about data types

And back:
>>> c = int(b)

>>> c

4

Note the error – be aware of your data types!
>>> c+b

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Dealing with text

The most frequent data we'll deal with is
characters, or more often strings of characters

Two strings can use ‘math operations’ too:
>>> word1 = 'hello'

>>> word2 = 'world'

>>> word1 + ' ' + word2 # Adding strings = concatenating

'hello world'

>>> word1 * 2 # Multiplying = repeating

'hellohello'

Breaking down strings

 Strings are really just lists of characters
 We can access individual positions, starting with 0:

>>> word1[0] # Give me character 0 – the first one

'h'

>>> word1[0:2] # Start at 0 – stop just before 2 (first L)

'he'

>>> word1[3:] # Start at 3, don't stop

'lo'

>>> word1[-1] # Give me the -1th character = the last

'o'

>>> word1[0:-1] # Start at 0 – stop just before -1 (=the last)

'hell'

Using built-in functions

Python comes with many useful functions
Called by name with brackets and arguments
 For example, max() gives you the largest of the

input numbers:
>>> max(3,6)
6

The function len() gives you the length of a
variable:
>>> len('hello')
5

Boolean comparisons

Python can also tell you if something is true:
>>> 5 > 2
True
>>> 7 <= 6
False
>>> a = 6
>>> a == 7
False
>>> a != 3
True

The logical values True and False are also
called Booleans (after George Boole)

Exercise

We will write (toy) code to create the Classical
Greek perfect from present tense forms:
• luo "I release" thuo "I sacrifice"
• leluka "I have released" tethuka "I've sacrificed"

Tips:
• Input – present form – need to get rid of the 'o'
 word_without_o = … ?

• Output –
 need to duplicate first consonant: first_consonant = ..?

 add -ka suffix: print(x + y + "ka")

Solution

word = "luo"
first_consonant = word[0] # this will be "l"
word_without_o = word[0:-1] # this will be "lu"
print leluka:

print(first_consonant + "e" + word_without_o + "ka")

Testing this in the IDE

Write your code in PyCharm
Click on a line number to set a breakpoint
Use: run > debug

• (This script is also available in Canvas > Files > Code)

Doing Linguistics with Python

You can do lots of string editing yourself
Write your own code for linguistic tasks
But there are MANY libraries out there to do

things for you:
• NLTK – the Natural Language Toolkit

• spaCy (https://spacy.io/)

• Stanza (https://stanfordnlp.github.io/stanza/)

• Trankit (https://github.com/nlp-uoregon/trankit)

• …

https://spacy.io/
https://stanfordnlp.github.io/stanza/
https://github.com/nlp-uoregon/trankit

Doing Linguistics with Python

Using things off the shelf is generally a good idea
• Other people will know what you used
• Code easier to maintain

(Object Oriented Programming – more later)
• Less work for you

There are also some cons:
• Might not do exactly what you expect
• Bugs harder to trace
• Version incompatibilities
• Security vulnerabilities

NLTK

Basically a collection of teaching demo-type
tools by Steven Bird and colleagues

Not recommended by some for large scale
applications (alternatives: e.g. spaCy, Stanza,
neural network libraries like flair, …)

But actually widely used in a lot of
applications, especially if speed is not crucial

NLTK – a quick taste

Download and install from
http://www.nltk.org

Once installed, run Python in terminal
Download resources:

>>> import nltk

>>> nltk.download()

http://www.nltk.org/

NLTK – a quick taste
 With the resources installed, we can play with some texts:

>>> from nltk.book import *
*** Introductory Examples for the NLTK Book ***
Loading text1, ..., text9 and sent1, ..., sent9
Type the name of the text or sentence to view it.
Type: 'texts()' or 'sents()' to list the materials.
text1: Moby Dick by Herman Melville 1851
text2: Sense and Sensibility by Jane Austen 1811
text3: The Book of Genesis
text4: Inaugural Address Corpus
text5: Chat Corpus
text6: Monty Python and the Holy Grail
text7: Wall Street Journal
text8: Personals Corpus
text9: The Man Who Was Thursday by G . K . Chesterton 1908

NLTK – a quick taste

What are these texts?
• Objects of the type or Class Text

• A 'customized' data type – we will learn a lot about
these

• Objects represent encapsulated, somewhat
autonomous pieces of code with specified functionality

Objects have:
• Properties or attributes

• Functions or methods

The Text object

You can test an object being of a certain Class:
>>> isinstance(text1, Text)

True

You can access properties of an object using .
(dot) notation:
>>> text1.name

'Moby Dick by Herman Melville 1851'

The Text object

 Objects can respond to many built-in functions:
>>> len(text1)

260819

 But they also have their own special functions,
methods, accessed with .name(arguments)

 The method .concordance() takes a String argument:
>>> text1.concordance("harpoon")

Displaying 25 of 76 matches:

hen they were nigh enough to risk a harpoon from the bowsprit ? Now having a ni

n a sunrise and a sunset . And that harpoon -- so like a corkscrew now -- was f

over the fire - place , and a tall harpoon standing at the head of the bed . B

, when lo and behold , he takes the harpoon from the bed corner , slips out the

Methods and arguments

Method arguments can be optional, in which
case a default is supplied

 .concordance() can take 3 arguments:
• word (a Unicode string, the word being searched for)

• width (characters to display, default = 79)

• lines (how many results maximum, default = 25)

Methods and arguments
>>> text1.concordance("harpoon",10,10)

Displaying 10 of 76 matches:

risk a harpoon

And that harpoon

a tall harpoon

…

>>> text1.concordance("harpoon",lines=100)

Displaying 76 of 76 matches:

hen they were nigh enough to risk a harpoon from the bowsprit ? Now having a ni

n a sunrise and a sunset . And that harpoon -- so like a corkscrew now -- was f

over the fire - place , and a tall harpoon standing at the head of the bed . B

First notions about OOP

A major line of thought for Object Oriented
Programming (OOP)
• Objects are encapsulated
• They do their job and expose methods
• We don't know (and don't want to know) how

Advantages:
• Others can import our objects without studying our

code
• Possible to improve our objects without altering their

interface to the outside

An example: .similar(word)

The Class Text has a .similar function with the
signature: .similar(word, num=20)

 It gives you num distributionally similar words
• How?
• Who cares: The Text Class takes care of this for us
• If we have a better method to do this next week, we'll

release a new version of the Text Class

➢ This is nice and correct in principle… but stay
vigilant!

An example: .similar(word)

>>> text1.similar("boat",num=4)
whale ship head sea
>>> text1.similar("Ahab",num=4)
it he that queequeg
>>> text1.similar("crew",num=4)
whale ship head boat
>>> text1.similar("harpoon",num=4)
whale boat ship sea

A (slightly) more serious program

For our next exercise, we will build a program
to check whether our input is a palindrome:
• dud

• kayak

Or not:
• bud

• magic

Palindrome checker

Thinking about input and output:
• IN: a string of characters

• OUT:
 An answer in English (String)

 Or maybe: True or False (Boolean)

Some starter code

test = "kayak"

Ideally we'd want something like this:
if test_is_a_palindrome:

print("The input '" + test + "' is a palindrome")
else:

print("The input '" + test + "' is not a palindrome")

We need to learn more…

A word about indentation

To know what to do 'only if X' Python uses
indentation:
x = 5 # Not indented, always do this part
y = user_input # Also not indented
if x > y: # Not indented, since this check always happens

print("it's bigger!") # This is indented – only do if x>y

 In other words, indentation determines the
scope of the if statement

If, else and elif

You can also test multiple alternatives:

x = 5
y = user_input
if x > y:

print("it's bigger!")

elif x < y:
print("it's smaller!")

else:
print("it's the same!")

Quick exercise – imagine it’s snowing!

Hurray! Snow!!
What will this code print?

snow_inches = 40 # Current snow level
campus_open_max = 55 # Level at which campus closes
tomorrow_min = 10 # Minimum projected snowfall tomorrow
tomorrow_max = 20 # Maximum project snowfall tomorrow

if snow_inches + tomorrow_max < campus_open_max:
print("campus will definitely be open")

elif snow_inches + tomorrow_min < campus_open_max:
print("campus might be open")

else:
print("campus will definitely be closed")

Another word about indentation

Python accepts two ways of indenting:
• Initial spaces, often 4 (sometimes 2 are used)

• Tabs

PEP8 recommends 4 spaces
But many developers use tabs (more in EU)
 I will accept either, but no mixing!

➢What is PEP?

Conventions and names

 It is a good idea to use informative names for
variables and functions

To document your code inside your scripts
• Helps others work with your code

• Helps you to remember what you were doing

• Allows creation of automatic documentation

High quality code is easy to maintain – but
what conventions should we use?

PEP

Python is developed using the Python
Enhancement Proposal (PEP) process
• Enhancements to the language in newer versions

(e.g. adding new operators, built in functions…)
• Various recommendations

Crucial for learning to write readable code:
• PEP 0008: Style Guide for Python Code

https://www.python.org/dev/peps/pep-0008/
• PyCharm automatically checks PEP8 compliance
• We will follow PEP8 in our assignments

https://www.python.org/dev/peps/pep-0008/

Some PEP8 basics

Variables and functions should have
informative, lower case names:
• ✓ word_count ✗wdct

• ✓ find_nouns() ✗findnn(), FindNouns()

White space around operators:
✓count = previous + 1

✗count=previous+1

Line length should be 79 characters maximum

Indentation and hierarchy

Note that indentation is hierarchical:
if x > y: # Not indented, always happens.

if x > y * 2: # Indented, happens if x > y
print("it's a lot bigger!") # Indented twice!

else:
print("it's a bit bigger") # Indented twice!

else:
print("it's smaller")

For next time: NLTK practice

Please work through the NLTK book (Python
3.X version), chapter 1, through the end of
section 1: (up to “A Closer Look at Python”)
• http://www.nltk.org/book/ch01.html

We'll review some of the functions in class
later
• Note: for the dispersion_plot, you'll need to install

NumPy and Matplotlib using pip install numpy etc.
• No need to submit anything – but ask a TA or me for

help if you get stuck!

http://www.nltk.org/book/ch01.html

