
LING-362

Introduction to 
Natural Language Processing

Python & NLTK basics



Talks etc.

Sep. 10 – me & co. – Digital Classicist Seminar,
Named Entities in Coptic Antiquity

Sep. 24:
• Gemma Boleda (UPF Barcelona), 

Computational Semantics, GU Linguistics Speaker 
Series

• 19th Semi-Annual GU-CS Graduate Research – 3/4 talks 
with CL/IR topics:
https://www.georgetown.edu/event/the-19th-semi-
annual-gu-cs-graduate-research-presentation-days-
session-i/

https://www.digitalclassicist.org/wip/wip2021.html
https://www.georgetown.edu/event/the-19th-semi-annual-gu-cs-graduate-research-presentation-days-session-i/


Discussion – Bar Hillel's pen

 Is Bar Hillel right?
Can context ever get pen right?

• Does perfect MT require perfect AI?

• Can we get much better even without it?



How right is Bar Hillel today?

✗

✗

✗

✗

✗

✗



How right was Bar Hillel last year?

✗

✗

✗

✗

✗

✓

Three(!) years ago:



Today

Python basics
• Doing math

• Dealing with variables

• Processing strings of text

• Starting our very first program

NLTK
• Our first Class of objects

• Some neat ready-made methods



Python basics

Programming is all about computing:
• Getting some values from somewhere

• Storing them in variables

• Doing some calculations

• Outputting the result

First example: doing math



Starting the Python console

Python is an 'interpreted' language
• Commands are read one at a time (from script / CLI)

• No compilation

• Slower than (some) compiled languages

• Easier to modify / debug

• Cross platform (only interpreter OS-specific)

You can start the interpreter from the 
command line (CLI, terminal) by running 
python (*or python3 etc.)



Time to ask Python some questions

Assigning from variables:
>>> b = 8 * a
>>> b
24 
>>> (a + a) / 4 # Normal – in Python 3
1.5
>>> (a + a) // 4 # What’s this?
1
>>> (a + a) % 4 # The modulo '%' gives us the remainder
2



Time to ask Python some questions

Basic math:
>>> 5 * 8

40 

>>> a = 3 # assign the variable 'a' the value 3

>>> a * a

9

>>> a ** 2 # use ** for powers

9



A word about data types

 Python treats numbers like 3, 4 (and our a) as integers
 Calculations with integers normally result in integers 

(no fractions)
 We can turn a variable into a float explicitly

>>> a = 3

>>> a = float(a)

>>> a

3.0

>>> (a + a) // 4

1.5

>>> (a + a) / 4 # This now works in Python 2 and 3

1.5



A word about data types

We can convert integers to strings:
>>> a = 4

>>> a

4

>>> b = str(a)

>>> b

'4'



A word about data types

And back:
>>> c = int(b)

>>> c

4

Note the error – be aware of your data types!
>>> c+b

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'



Dealing with text

The most frequent data we'll deal with is 
characters, or more often strings of characters

Two strings can use ‘math operations’ too:
>>> word1 = 'hello' 

>>> word2 = 'world'

>>> word1 + ' ' + word2 # Adding strings = concatenating

'hello world'

>>> word1 * 2 # Multiplying = repeating

'hellohello'



Breaking down strings

 Strings are really just lists of characters
 We can access individual positions, starting with 0:

>>> word1[0] # Give me character 0 – the first one

'h'

>>> word1[0:2] # Start at 0 – stop just before 2 (first L)

'he'

>>> word1[3:] # Start at 3, don't stop

'lo'

>>> word1[-1] # Give me the -1th character = the last

'o'

>>> word1[0:-1] # Start at 0 – stop just before -1 (=the last)

'hell'



Using built-in functions

Python comes with many useful functions
Called by name with brackets and arguments
 For example, max() gives you the largest of the 

input numbers:
>>> max(3,6)
6

The function len() gives you the length of a 
variable:
>>> len('hello')
5



Boolean comparisons

Python can also tell you if something is true:
>>> 5 > 2
True
>>> 7 <= 6
False
>>> a = 6
>>> a == 7
False
>>> a != 3
True

The logical values True and False are also 
called Booleans (after George Boole)



Exercise

We will write (toy) code to create the Classical 
Greek perfect from present tense forms:
• luo "I release" thuo "I sacrifice"
• leluka "I have released" tethuka "I've sacrificed"

Tips:
• Input – present form – need to get rid of the 'o'
 word_without_o = … ?

• Output –
 need to duplicate first consonant: first_consonant = ..?

 add -ka suffix: print(x + y + "ka")



Solution

word = "luo"
first_consonant = word[0]  # this will be "l"
word_without_o = word[0:-1]  # this will be "lu"
# print leluka:

print(first_consonant + "e" + word_without_o + "ka")



Testing this in the IDE

Write your code in PyCharm
Click on a line number to set a breakpoint
Use: run > debug

• (This script is also available in Canvas > Files > Code)



Doing Linguistics with Python

You can do lots of string editing yourself
Write your own code for linguistic tasks
But there are MANY libraries out there to do 

things for you:
• NLTK – the Natural Language Toolkit

• spaCy (https://spacy.io/)

• Stanza (https://stanfordnlp.github.io/stanza/)

• Trankit (https://github.com/nlp-uoregon/trankit) 

• …

https://spacy.io/
https://stanfordnlp.github.io/stanza/
https://github.com/nlp-uoregon/trankit


Doing Linguistics with Python

Using things off the shelf is generally a good idea
• Other people will know what you used
• Code easier to maintain 

(Object Oriented Programming – more later)
• Less work for you

There are also some cons:
• Might not do exactly what you expect
• Bugs harder to trace
• Version incompatibilities
• Security vulnerabilities



NLTK

Basically a collection of teaching demo-type 
tools by Steven Bird and colleagues

Not recommended by some for large scale 
applications (alternatives: e.g. spaCy, Stanza, 
neural network libraries like flair, …)

But actually widely used in a lot of 
applications, especially if speed is not crucial



NLTK – a quick taste

Download and install from 
http://www.nltk.org

Once installed, run Python in terminal
Download resources:

>>> import nltk

>>> nltk.download()

http://www.nltk.org/


NLTK – a quick taste
 With the resources installed, we can play with some texts:

>>> from nltk.book import *
*** Introductory Examples for the NLTK Book ***
Loading text1, ..., text9 and sent1, ..., sent9
Type the name of the text or sentence to view it.
Type: 'texts()' or 'sents()' to list the materials.
text1: Moby Dick by Herman Melville 1851
text2: Sense and Sensibility by Jane Austen 1811
text3: The Book of Genesis
text4: Inaugural Address Corpus
text5: Chat Corpus
text6: Monty Python and the Holy Grail
text7: Wall Street Journal
text8: Personals Corpus
text9: The Man Who Was Thursday by G . K . Chesterton 1908



NLTK – a quick taste

What are these texts?
• Objects of the type or Class Text

• A 'customized' data type – we will learn a lot about 
these

• Objects represent encapsulated, somewhat 
autonomous pieces of code with specified functionality

Objects have:
• Properties or attributes

• Functions or methods



The Text object

You can test an object being of a certain Class:
>>> isinstance(text1, Text)

True

You can access properties of an object using . 
(dot) notation:
>>> text1.name

'Moby Dick by Herman Melville 1851'



The Text object

 Objects can respond to many built-in functions:
>>> len(text1)

260819

 But they also have their own special functions, 
methods, accessed with .name(arguments)

 The method .concordance() takes a String argument:
>>> text1.concordance("harpoon")

Displaying 25 of 76 matches:

hen they were nigh enough to risk a harpoon from the bowsprit ? Now having a ni

n a sunrise and a sunset . And that harpoon -- so like a corkscrew now -- was f

over the fire - place , and a tall harpoon standing at the head of the bed . B

, when lo and behold , he takes the harpoon from the bed corner , slips out the



Methods and arguments

Method arguments can be optional, in which 
case a default is supplied

 .concordance() can take 3 arguments:
• word (a Unicode string, the word being searched for)

• width (characters to display, default = 79)

• lines (how many results maximum, default = 25)



Methods and arguments
>>> text1.concordance("harpoon",10,10)

Displaying 10 of 76 matches:

risk a harpoon

And that harpoon

a tall harpoon

…

>>> text1.concordance("harpoon",lines=100)

Displaying 76 of 76 matches:

hen they were nigh enough to risk a harpoon from the bowsprit ? Now having a ni

n a sunrise and a sunset . And that harpoon -- so like a corkscrew now -- was f

over the fire - place , and a tall harpoon standing at the head of the bed . B



First notions about OOP

A major line of thought for Object Oriented 
Programming (OOP)
• Objects are encapsulated
• They do their job and expose methods
• We don't know (and don't want to know) how

Advantages:
• Others can import our objects without studying our 

code
• Possible to improve our objects without altering their 

interface to the outside



An example: .similar(word)

The Class Text has a .similar function with the 
signature: .similar(word, num=20)

 It gives you num distributionally similar words
• How?
• Who cares: The Text Class takes care of this for us
• If we have a better method to do this next week, we'll 

release a new version of the Text Class

➢ This is nice and correct in principle… but stay 
vigilant!



An example: .similar(word)

>>> text1.similar("boat",num=4)
whale ship head sea
>>> text1.similar("Ahab",num=4)
it he that queequeg
>>> text1.similar("crew",num=4)
whale ship head boat
>>> text1.similar("harpoon",num=4)
whale boat ship sea



A (slightly) more serious program

For our next exercise, we will build a program 
to check whether our input is a palindrome:
• dud

• kayak

Or not:
• bud

• magic



Palindrome checker

Thinking about input and output:
• IN: a string of characters

• OUT: 
 An answer in English (String)

 Or maybe: True or False (Boolean)



Some starter code

test = "kayak"

# Ideally we'd want something like this:
if test_is_a_palindrome:

print("The input '" + test + "' is a palindrome")
else:

print("The input '" + test + "' is not a palindrome")

# We need to learn more…



A word about indentation

To know what to do 'only if X' Python uses 
indentation:
x = 5  # Not indented, always do this part
y = user_input # Also not indented
if x > y:  # Not indented, since this check always happens

print("it's bigger!") # This is indented – only do if x>y

 In other words, indentation determines the 
scope of the if statement



If, else and elif

You can also test multiple alternatives:

x = 5  
y = user_input
if x > y:

print("it's bigger!")

elif x < y:
print("it's smaller!")

else:
print("it's the same!")



Quick exercise – imagine it’s snowing!

Hurray! Snow!!
What will this code print?

snow_inches = 40  # Current snow level
campus_open_max = 55 # Level at which campus closes
tomorrow_min = 10 # Minimum projected snowfall tomorrow
tomorrow_max = 20 # Maximum project snowfall tomorrow

if snow_inches + tomorrow_max < campus_open_max:
print("campus will definitely be open")

elif snow_inches + tomorrow_min < campus_open_max:
print("campus might be open")

else:
print("campus will definitely be closed")



Another word about indentation

Python accepts two ways of indenting:
• Initial spaces, often 4 (sometimes 2 are used)

• Tabs

PEP8 recommends 4 spaces
But many developers use tabs (more in EU)
 I will accept either, but no mixing!

➢What is PEP?



Conventions and names

 It is a good idea to use informative names for 
variables and functions

To document your code inside your scripts
• Helps others work with your code

• Helps you to remember what you were doing

• Allows creation of automatic documentation

High quality code is easy to maintain – but 
what conventions should we use?



PEP

Python is developed using the Python 
Enhancement Proposal (PEP) process
• Enhancements to the language in newer versions 

(e.g. adding new operators, built in functions…)
• Various recommendations

Crucial for learning to write readable code:
• PEP 0008: Style Guide for Python Code

https://www.python.org/dev/peps/pep-0008/
• PyCharm automatically checks PEP8 compliance
• We will follow PEP8 in our assignments

https://www.python.org/dev/peps/pep-0008/


Some PEP8 basics

Variables and functions should have 
informative, lower case names:
• ✓ word_count ✗wdct

• ✓ find_nouns() ✗findnn(), FindNouns()

White space around operators:
✓count = previous + 1

✗count=previous+1

Line length should be 79 characters maximum



Indentation and hierarchy

Note that indentation is hierarchical:
if x > y:  # Not indented, always happens.

if x > y * 2: # Indented, happens if x > y
print("it's a lot bigger!") # Indented twice!

else: 
print("it's a bit bigger") # Indented twice!

else:
print("it's smaller")



For next time: NLTK practice

Please work through the NLTK book (Python 
3.X version), chapter 1, through the end of 
section 1: (up to “A Closer Look at Python”)
• http://www.nltk.org/book/ch01.html

We'll review some of the functions in class 
later
• Note: for the dispersion_plot, you'll need to install 

NumPy and Matplotlib using pip install numpy etc.
• No need to submit anything – but ask a TA or me for 

help if you get stuck!

http://www.nltk.org/book/ch01.html

