
LING-362

Introduction to 
Natural Language Processing

Viterbi Decoding



HMMs

An HMM is really a weighted FSA
The HMM definition comprises:

• V = v1 … vV # input vocabulary items

• Q = q1, … qN (q0,qF) # states

• A = a11,a12 … an1 … ann # transition prob. matrix

• O = <o1, …, oT> # ordered observations of V

• B = bi(ot) # prob. of ot given qi

# a.k.a ‘emission’ probs.

2



HMMs – formal definition

Transition probabilities (A): 
(adapted from Jurafsky & Martin)

P(TO|VB) = 0.035 (rows give the condition)

Q0 VB TO NN QF

Q0 -- 0.0004 0.0064 0.0365 0

VB -- 0.0038 0.035 0.047 0.012

TO -- 0.83 0 0.00047 0.00079

NN -- 0.0040 0.016 0.087 0.23

QF -- -- -- -- --

3



HMMs – formal definition

Emission probabilities (B): 
(adapted from Jurafsky & Martin 2008)

P(see|VB) = 0.12 (assuming this is VB, chance to get 'see')

I want to see

VB 0 0.0093 0 0.12

TO 0 0 0.99 0

NN 0 0.000054 0 0.000007

4



Where are we in the definition?

The POS tagging task maps directly to the 
HMM definition:
• V: words of the English language

• Q: the parts of speech (state: DT -> state: NN)

• A: probability of DT -> NN, … (Table A)

• B: probability P(the|DT), … (Table B)

• O: The observed text to be tagged <w1, …, wn>

5



Using the chain

Given A and B, it’s not complicated to get the 
single next most probable tag

But…
• What if choosing that tag will lead us to very unlikely 

choices later on?

• What if choosing the second best one now is better in 
total?

➢Need to traverse multiple paths and remember 
probabilities – hard to do efficiently

6



The Viterbi algorithm

Devised multiple times in parallel, including by 
Andrew Viterbi
• Essential for POS tagging but also:

• Signal processing (cell phone signal decoding)

• DNA sequencing

• WiFi error correction

• … and much more

A special case of dynamic programming 
(contrast: greedy algorithm)

7



The Viterbi algorithm

What we’ll need for the algorithm:
• Table A: a dictionary of transition probablities

(somedict[DT][NN] -> probability of transition DT|NN)

• Table B: a dictionary of word|tag probabilities 
(otherdict[N][puppy] = 0.000034)

• State space (i.e. the tag set, list or tuple)

• Start probability dictionary for q0
(start[DT] = 0.1812)

0.000034

…
8



Building table B – emit_p

We can write code to make sure we have a 
value for every possible item in a dictionary

But what about OOV items?
Example: p(dancerliness) = ??

• emit_p['NN']['dancerliness']

KeyError: 'dancerliness‘

Solvable using some if … :

9



Building block: defaultdict

A better way is to have a dictionary that knows 
how to initialize unseen values 

Uses a default value if key is unknown:
• Should be initializable with a data type
• Or a function returning some value

from collections import defaultdict
my_dict = defaultdict(int)
print(my_dict["puppy"])
0

10



Building block: defaultdict

How to return a specific value?
Suppose we want the default to be 0.5
 Instead of int, we can give a special function as 

the default:

# Suppose half_returner is a function, always returns 0.5

my_dict = defaultdict(half_returner)

11



Building block: defaultdict

This is a little cumbersome, so a more Pythonic
way is this to use the anonymous function 
lambda:

my_dict = defaultdict(lambda: 0.5)

Same as:
# Suppose half_returner is a function, always returns 0.5
def half_returner():

return 0.5
my_dict = defaultdict(half_returner)

12



Building block: defaultdict

And we can even make a defaultdict of 
defaultdicts:
• x = defaultdict(lambda: defaultdict(lambda: 0.00000001))

 Now x is a dictionary: 
• which defaults unknown entries to dictionaries
 which default unknown entries to 0.0000001..

➢ So what is the value of:
x["puppy"]["the"] ?

13



Viterbi - implementation

Download and debug 
tagging/viterbi_simple.py

 Imports and states:

from collections import defaultdict

# Tagger states Q (the tag set)
states = (',', 'CC', 'CD', 'DT', 'EX', 'IN', 'JJ', 'JJR', 'JJS', 'LS', 'MD', 'NN', 'NNP', 'NNPS', 
'NNS', 'PDT', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS', 'SENT', 'SYM', 'TO', 'UH', 'VB', 'VBD', 
'VBG', 'VBP', 'VBZ', 'WDT', 'WP', 'WRB')



Viterbi – starting probabilities

Training data:
# q0 probabilities: 
# can't use prior tags to estimate initial state
start_p = {

',': 0.006,
'CC': 0.0451,
'CD': 0.0158,
'DT': 0.1365,
'EX': 0.0102,
…

}



Viterbi – transitional probabilities

Training data for transitions is a dictionary:
trans_p ={}

We could set the transition probabilities by 
assigning nested dictionaries:

trans_p['DT'] = {'JJ': 0.0208, 'NN': 0.0397 …}

But these would be regular dictionaries, no 
default value for missing keys



Viterbi - transitional probabilities

A better way:
trans_p = 
defaultdict(lambda: defaultdict(lambda: 0.00000001))

# Don’t make a new dictionary, 
# just update the defaultdict with new dictionary values

trans_p['DT'].update({'JJ': 0.0208, 'NN': 0.0397, …}

trans_p['IN'].update({',': 0.0015, 'CD': 0.0016, …}



Viterbi – emission probabilities 

emit_p = defaultdict(lambda: defaultdict(lambda: 
0.00000001))

emit_p['VB']['want'] = 0.0093
emit_p['VB']['fly'] = 0.0001

…



The algorithm 1/3
def viterbi(obs, states, start_p, trans_p, emit_p):

path = [{}] # The Viterbi path is a list of dicts mapping tok+tag to probability

# Get initial probabilities for each tag given first token (obs[0])
for tag in states:

path[0][tag] = start_p[tag]*emit_p[tag][obs[0]]



The algorithm 2/3
# Get subsequent probabilities for obs[t] where t > 0 (tokens after the first)
for tok_num in range(1, len(obs)):

path.append({})
backpointer = {}
for tag in states:

max_prob = 0.0
probs = []
for prev_tag in states:

probs.append(path[tok_num - 1][prev_tag] * trans_p[prev_tag][tag] * emit_p[tag][obs[tok_num]])
if prob > max_prob:

max_prob = prob
best_prev = prev_tag

path[tok_num][tag] = max_prob
backpointer[tag] = best_prev
backpath.append(backpointer)



The algorithm 3/3
optimal_list = []

# Go through each token position in path;
# Each token position is now a dictionary 
# of tags to continuation probabilities given previous context
current_best_tag = max(path[-1], key=path[-1].get)
optimal_list.append(current_best_tag)
backpath.reverse()
for backpointer in backpath:

optimal_list.append(backpointer[current_best_tag])
current_best_tag = backpointer[current_best_tag]

optimal_list.reverse()

# The highest probability
max_total_prob = max(path[-1].values())
print('Best sequence: ' + ' '.join(optimal_list) + ' with highest probability of ' + 
str(float(max_total_prob)))



start_p
* 
emit_p

Viterbi algorithm

I want to fly

PRP PRP PRP PRP

VBP VBP VBP VBP

TO TO TO TO

VB VB VB VB

trans_p * 
emit_p * 
prev_p



Backtrace step

I want to fly

PRP PRP PRP PRP

VBP VBP VBP VBP

TO TO TO TO

VB VB VB VB

Best 
outcome



Group work

 Let’s try to trip up and then fix our tagger:
• Split up into groups
• Pick a sentence – not too long, about 4-7 words
➢Does the tagger work right?
➢How could you fix it? 
➢Let each member try a minor variation on this sentence – can the 

fixes work without breaking other variations?

• Add emission probabilities for new words
 Put them here:

https://corpling.uis.georgetown.edu/etherpad/p/viterbi
 You can make them up or use a corpus: 

https://corpling.uis.georgetown.edu/cqp/
 The TAs and I will provide guidance

https://corpling.uis.georgetown.edu/etherpad/p/viterbi
https://corpling.uis.georgetown.edu/cqp/

