
LING-362

Introduction to
Natural Language Processing

From HMM to Sequence Labeling

Talk

Center for Language and Speech Processing
Seminar, Friday, November 12 at 12:00pm ET

Andrew Piper, McGill University

• “How Can We Use Machine Learning to Understand
Narration?”

• Zoom Link: https://wse.zoom.us/j/93327212503
• Sign In Sheet:

https://docs.google.com/spreadsheets/d/1-
2sEgxADpmp2jlCvlAb8m-
8VqccUneHtYK1zFGUqWAs/edit?usp=sharing

https://wse.zoom.us/j/93327212503
https://docs.google.com/spreadsheets/d/1-2sEgxADpmp2jlCvlAb8m-8VqccUneHtYK1zFGUqWAs/edit?usp=sharing

Notes about homework

Create same dictionaries for start/trans/emit
Create the state list from seen tags
Read a file line by line…
Check if lines have a tab…

• Split by tab
• Get POS and word columns
• Remember tag as prev_tag for transition…
• +=1 to relevant frequencies

Divide all dictionary values by sum of
dictionary so you get probabilities

Notes about homework

Suppose each key in mydict points to a dict of counts
Compute probabilities from sums and store in ‘probs’
probs = defaultdict(lambda: defaultdict(lambda: 0.0001))

for pos1 in mydict:
total = sum(mydict[pos1].values()) # sum values for this pos
for pos2 in mydict[pos1]:

freq = mydict[pos1][pos2]
probs[pos1][pos2] = freq/total

And similarly for emit_p!

start_p
*
emit_p

Brief review: Viterbi algorithm

I want to fly

PRP PRP PRP PRP

VBP VBP VBP VBP

TO TO TO TO

VB VB VB VB

trans_p *
emit_p *
prev_p

Backtrace

I want to fly

PRP PRP PRP PRP

VBP VBP VBP VBP

TO TO TO TO

VB VB VB VB

Best
outcome

From tagging to sequences

Part of speech labeling is a classic example of
token-wise tagging:
• Input is a sequence of words (tokens)
• Each word receives exactly one category
• There are usually no other features except words to

decide the correct tag

But not all labeling tasks are like this!
We could tag more complex sequences and

with more input features!

Sequence labeling – NER

A typical example is Named Entity Recognition
Not every token is labeled:

PER -- ORG --

• Kim visited Intel .

Labels come in spans:

PER PER -- ORG ORG

• Kim Jung visited Intel Corp.

How many spans?

 If we only use labels like PER and ORG, we can
treat this as an HMM/Viterbi problem
• Tags: PER, ORG, .., -- (‘--’ is a tag)

• Input: Kim, Jung, visited …

• Emission probabilities: P(Kim|PER), P(Intel|ORG)

• Transition probabilities: PER → --→ ORG → ORG

But how can we tell how many ORGs we have?
• Intel Corp. ORG ORG → 1 org., 2 tokens

• IBM Google lawsuit ORG ORG --→ 2 orgs!!

Solution: BIO encoding

We add more label types to indicate Beginning
and Inside of entities:
• IBM B-ORG

• Corp. I-ORG

• hired O

• Kim B-PER

• Jung I-PER

The label O is like our ‘--’: Outside any entity

Solution: BIO encoding

Labels impose restrictions on transitions:
• P(B-PER → I-PER) > p(I-PER → B-PER)

• P(O → I-PER) = 0 (why?)

We can still use HMM/Viterbi…
But is just one emission probability enough?

• P(PER|Kim) …

• What about other features?

Just one emission?

Many things influence the probability that a word
is a person/company name:
• Capitalization (very good at finding ‘O’)
• All caps? (ORG)
• Word length
• Knowledge bases (is this in a list of company

names? Place names?)
• …

Viterbi can only multiply feature probabilities
Not good for learning arbitrary feature

conjunctions (weighted features)

Using multiple features

 Ideally our input should look like this:
• IBM NNP allcaps … B-ORG

• Corp. NNP title … I-ORG

• hired VBD lower … O

• Kim NNP title … B-PER

• Jung NNP title … I-PER

Decoding - CRF

Efficient decoding over multiple weighted
features can be done using Conditional Random
Fields (CRF)

We do not have time to implement CRF in this
course

 For our purposes, a Linear Chain CRF is
• a sequence label decoder equivalent to a Viterbi decoder
• using multiple input features
• and arbitrary functions for features over the sequence

Advanced reading: Sutton & McCallum (2006) in
Canvas (optional!)

Decoding - CRF

For smaller datasets, CRF taggers can learn
joint discrete feature value distributions:
• Python library:
 pip install python-crfsuite (Okazaki 2007)

• Good off the shelf CRF tagger:
 Marmot (Müller et al. 2013; Java),

http://cistern.cis.lmu.de/marmot/

• CRF NER tagging example in Canvas:
 ner/crf_entities.py

http://cistern.cis.lmu.de/marmot/

Neural sequence labeling

Since features can be anything…
For larger datasets, we can use neural

networks
Word embeddings as features
What algorithm to use?

• Definitely not Viterbi: we don’t want the product of
probabilities that dimension 1 is…

• -> use CRF on neural network outputs!

Popular libraries

Flair (Akbik et al. 2019)

AllenNLP (Gardner et al. 2018)

NCRF++ (Yang & Zhang 2018)

Example – Flair (Akbik et al. 2019)

from flair.models import SequenceTagger

pretrained NER tagger
tagger = SequenceTagger.load('ner')

sentence = Sentence('George Washington went to Washington .')

predict NER tags
tagger.predict(sentence)

print sentence with predicted tags
print(sentence.to_tagged_string())

George <B-PER> Washington <E-PER> went to Washington <S-LOC> .

For training see:
https://github.com/flairNLP/flair/blob/master/resources/docs/TUTORIAL_7_TRAINING_A_MODEL.md

https://github.com/flairNLP/flair/blob/master/resources/docs/TUTORIAL_7_TRAINING_A_MODEL.md

From HMMs to syntax

We’ve already seen some simple ways of
dealing with syntax:
• Markov models capture surface properties of syntax
 N-grams (VMM): A lot of …

 HMM: DT JJ NN

From HMMs to syntax

We’ve already seen some simple ways of
dealing with syntax:
• Markov models capture surface properties of syntax
 N-grams (VMM): A lot of …

 HMM: DT JJ NN

• Finite-state methods build possible sequences
 Coptic:

 PREP -> ART -> NOUN

 AUX -> SUBJ -> V -> OBJ

Modelling syntax

Why isn’t it enough?
• FSAs and n-grams (weighted FSAs) have no memory
• No way to manage long distance dependencies:
 Pick up

the one we saw yesterday…

• Distance > n (for n-order Markov model)
• Unlimited embedding depth can exceed properties of

regular languages
• Sparse attestation can exceed learnability with realistic

(finite) unconstrained neural network

Languages and complexity

Regular languages are the simplest grammars
we can build:
• Include all finite languages (where we can enumerate

all expressions)

• Potential for infinite generation (a+)

• Optional or empty elements (ab?, ab*)

• (Regular languages without the latter are also called
'star-free')

Beyond regular languages

What if we want to name a+b something else?
• We could do things like: (DT+JJ+N)=NP: NP+…

• This is still a regular language (can use FSA)

• Even some recursion is OK:
 x -> x

 un + adj -> adj

Are there constructions that can’t be
expressed using regular grammars?

Example: center-embedding

 In English we can center-embed relative clauses:
• The boy laughed

• The boy the cat bit laughed

 Structure:
• S > NP VP

• S > NP S VP → NP NP VP VP

We can potentially continue to center-embed…
• Result:

utterances of the type NPn VPn (or generally anbn)

Another example

 Less famous – Semitic embedded compound
modifiers:
• [bat [melex ‘ašir] yafa]

daughter king rich.M beautiful.F

Beautiful daughter of a rich king

• [bat [melex [‘am gadol] ‘ašir] yafa]
daughter king people great.M rich.M beautiful.F

Beautiful daughter of a rich king of a great people

➢ Note that agreement information must match
➢ Memory: Nn An with matching gender/number

The Chomsky Hierarchy

“self-embedding” categories:
• Are a feature of context free languages

• Allow us a sort of 'memory'

• Long thought to cover human grammars

Context free grammars (CFGs) occupy Type-2
of the Chomsky hierarchy (Chomsky 1956)

Type: 0

1

2

3
(Image: Wikimedia)

The limits of CFGs

Context free grammars allow rules of the form:
• α > β

• α is a non terminal symbol (hidden node: NP, VP, S …)

• β is any sequence of terminal or non-terminal symbols
(tokens or higher nodes)

Examples:
• S > NP VP (could still be regular)

• S > NP S VP (context free)

Are human languages more complex?

Some conceivable rules are not covered:
• We cannot ‘peek’ to limit application of a rule:
 S > NP S VP (OK)
 PP S PP > PP NP S VP PP (check for surrounding PPs: not OK)

Rules of this type are context-sensitive
• αAβ > αγβ

• We can prove that patterns of the type anbncn are
context-sensitive

• So are patterns like (abc …)n

Are human languages more complex?

There are few examples of context sensitive
structures in natural language

Famous example: Swiss German crossing
dependencies (Shieber 1985)

Image: wikimedia

Are human languages more complex?

There are few examples of context sensitive
structures in natural language

Famous example: Swiss German crossing
dependencies (Shieber 1985)

Image: wikimedia

Context Free Grammars

CFGs are nevertheless enough for most structures
and much more efficient to compute
• A context free grammar is a set of (de)composition rules

over a set of symbols:
 NP > DT NN

 NP > NNP

 DT > the

 NN > house

 NN > mouse

 …

• Symbols which do not decompose are called terminals
(often =tokens)

Context Free Grammars

The set of decomposition combinations
generates all utterances in the language L
modelled by the grammar

A starting symbol must be selected to
generate from; usually S

Context Free Grammars

Some example rules:
• S > NP VP
• VP > V NP
• VP > V
• V > eats
• NP > DT NN
• NN > mouse
• NN > house
• DT > the
• …

Now we can generate…

 (never minding meaning – à la 'colorless green
ideas…')

Exercise

Let’s try to extract context free rules from
sentences:
• Every sentence has S at the top

• Breaks down into phrases

• Phrases decompose into our POS tags/other phrases

• POS tags lead to tokens

Exercise

Example:
• They really go above and beyond!

Tag it first:
• PRP RB VBP RB CC RB .

So we have:
- RB > really
- VBP > go
…

What are the phrase structure rules?

Exercise

A possible analysis (English Web Treebank;
other analyses are possible!)

How can we write the rules?

Exercise

Break down the transitions:
• S > NP ADVP VP

• NP > PRP

• ADVP > RB

• VP > VBP ADVP

• ADVP > RB CC RB

