
LING-362

Introduction to
Natural Language Processing

Syntactic parsing III

Review - CKY

Tokens at the top of the table

The boys shop daily

Dynamic programming – CKY

Check bottom of column for possible
categories for each token

The boys shop daily

DT

Dynamic programming – CKY

Check intersections in higher rows:
• Is this a possible segmentation?

• Only binary branching grammars allowed
(Chomsky Normal Form – CNF)

The boys shop daily

DT

NNS

Dynamic programming – CKY

Unambiguous – no problem

The boys shop daily

DT NP

NNS

Dynamic programming – CKY

For ambiguous cases, we must keep track of
what goes with what

The boys shop daily

DT NP S | S

NNS NP

VBP | NN VP

RB | NN

Derivation
does not

terminate!

Choosing the right parse

All an algorithm like CKY does for us so far is
check for possible positions to split into
phrases
• Useful in many contexts (CKY can be applied to Chinese

word segmentation! Qian & Liu 2012)

• Genome mapping (see Poptsova 2014)

• …

How can we decide which parse is right?

From CFGs to PCFGs

We can amend our definition to include
probabilities – a Probabilistic CFG:
G ≡

N Set of non-terminal symbolds

Σ Set of terminal symbols (not in N!)

R Set of rules of the form A → β [p]
where A ∈ N, β ∈ (Σ∪N)*
and p is the probability P(β|A)

S The designated start symbol

From CFGs to PCFGs

Probabilities?
• We can treat the proportion of each decomposition of

each category as its probability
 NP > DT NN: 35%

 NP > NNS: 20%

 NP > PRP: 20%

 NP > DT JJ NN: 10%

 …

100%

This sounds like a great idea!

Even if we have lots of spurious generations in
our data, the parser will never choose them!
• Sure, these constituents are licensed by the grammar:
 (ADVP (NP (NNS finishes))))

 (NP (DT the) (NP (NNS finishes)))

• But they are very unlikely

• This is good news, right?

..parser will never choose them?

The problem with ‘very unlikely’ in CFG is that it
effectively means never

Consider legitimate ambiguities:
• PP attachment:
 I [saw [the man with the telescope]]

 I [saw [the man] [with the telescope]]

• PCFG level view:
 VP > V NP 65%

 VP > V NP PP 35%

➢ Incapable of ever getting high attachment! 

Structural and lexical dependencies

Which rules we apply depends on:
• Lexical information (some verbs often have a high

attached instrument and some prepositions mark
these, e.g. break X with Y)

• Non-terminal, structural context: pronoun NPs are
much more likely as subjects than objects

How can we get these into our grammar

Band-aid 1

We can annotate each internal node with its
parent: (Johnson 1998)
(S

(NP (PRP I))

(VP (VBD was) (VBG calling)

(NP (DT a) (DT no) (NN brainer))))

Band-aid 1

We can annotate each internal node with its
parent: (Johnson 1998)
(S

(NP^S (PRP I))

(VP^S (VBD was) (VBG calling)

(NP^VP (DT a) (DT no) (NN brainer))))

Parent Annotation

Pros and cons

Adding parent information effectively causes
label splitting
• Leads to data sparseness: less examples of each label
• Some splits are useful, others are harmful – how can

we tell?

➢ Initial attempts at choosing the right cases to
split required a lot of manual work

➢But paid off for English: 72% -> 86% accuracy
(Klein & Manning 2003)

Why choose ourselves?

Petrov et al. (2006) devised the split and
merge algorithm
• Automatically testing splitting of categories (88.4%)

• Automatically merging categories (89.5%)

• Best result with smoothing (90.2%)

• State of the art into the 2010s, when neural networks
and distributional semantics were added

Excursus: cognitive implications

 It is very clear that we know more than CFGs
• Lexicalized effects in processing, garden path sentences

• Humans not bogged down by massive ambiguity
options, unless lexical items collude with syntax
 I saw the man with the telescope

 The cop chased the criminal with the fast car

Excursus: cognitive implications

What tree depths are we tracking?
• According to Bod (2009), allowing a language acquisition

simulation to condition on depth 4
trees is optimal

• Learning based on PTB and
CHILDES (MacWhinney 2000)

• Computers reproduce
children’s errors! ☺

Band-aid 2

Even label splitting doesn’t help with lexical
probabilities
• Does is matter for PP attachment that the preposition

is with?

• Does it matter whether the verb is chased or saw?

Lexicalized grammars

An easy way to bring in lexical information is to
annotate each node with its lexical head
(head percolation)

Lexicalized grammars

 In practice, most lexicalized parsers work on
percolated head+POS annotation

State of the art choice when data is limited/no
large word embeddings available

Quick exercise

What needs to percolate where?

Data sparseness

A major problem with the lexicalized approach
is sparseness

We hardly get probabilities for rules like this:

VP[calling,VBG] > VBD[was,VBD] VBG[calling,VBG] NP[brainer,NN]

Generation probabilities

 Instead of considering the full rule:
• VP[calling,VBG] > VBD[was,VBD] VBG[calling,VBG] NP[brainer,NN]

We can pretend that the head gets generated
first:

• VP[calling,VBG] > VBG[calling,VBG]

This part is still trivial but…

Generation probabilities

 Imagine we now consider each additional RHS
component separately:
• What is the chance that VBG[calling,VBG] has

NP[brainer,NN] to the right?

• P(NP[brainer,NN]|VBG[calling,VBG])

• Maybe also not so common – but more so than an entire
rule

Generation probabilities

We repeat this for all possible RHS members to
the right of the head

And do the same on the left

VP[calling,VBG] > VBG[calling,VBG]
VBD[was,VBD] ? VBG[calling,VBG] →? NP[brainer,NN]

Generation probabilities

What if there are two options?
• calling > was calling NPbrainer

• calling > was calling #

We need to consider ‘end of the line’ as an
item for probability estimation
• Add ‘fake’ RHS member “STOP”

• Estimate probability of stopping generation

Implementation: Collins Parser

The Collins parser implements this approach:
• Estimate probability for lexicalized decomposition rules

• Separately calculate probability of adding potential
RHS constituent until STOP symbol is generated

In Python

There are many parsers out there
Many developers use the Stanford Parser

• Written in Java

• A Python ‘wrapper’ exists

• But you can really run any Java tool from your code!

Calling the command line
import subprocess

command_params = ["java", "-mx2048m", "-cp" ,'"*;"',
"edu.stanford.nlp.parser.lexparser.LexicalizedParser" ,...]

proc = subprocess.Popen(command_params)
(stdout, stderr) = proc.communicate()

your parse is now in stdout

In Python

Another option is spacy

• pip install spacy
• python -m spacy.en.download (takes long!)

See https://spacy.io/ for a tutorial!

For latest SOTA constituent parsers (not user
friendly):
• http://nlpprogress.com/english/constituency_parsing.html

https://spacy.io/
http://nlpprogress.com/english/constituency_parsing.html

In Python

And many applications use dependency parses
either instead of or in tandem with
constituents

Not covered in this course -> see LING-367 and
more advanced classes

