
LING-362

Introduction to
Natural Language Processing

Neural Language Models part 2 /
Tagging and Hidden Markov Models 1

Neural LMs

Feed forward, back
propagation

Map any input to any
output, search for
optimal weights

1

Gradient descent

Use derivative of
loss function (gradient
descent)

Change weights
iteratively, usually
in mini-batches

Slow down as we go
along (learning rate
decay)

2

Represent words as vectors

Co-occurrence
frequencies (or
transformations
thereof) make a
vector space

Allows similarity
metrics for words
and documents
(later!)

Models of meaning
based on neighboring
words

 0 2 4 6 8 10
 0

 2
 4

 6
 8

1
0

 0

 2

 4

 6

 8

10

navy

is
la

n
d

fl
o
ri
d
a

beach=[6,7,9]

ship=[4,8,5]

Applications

Projecting vectors to lower dimensions
• Reveal systematic relationships

• Word level similarity

Word2Vec

LING-504 ML for Linguistics / Amir Zeldes
5

Don’t count, predict! (see Baroni et al. 2014)

Image: mccormickml.com

Training a model – toy example
from gensim import models

sotu = "sotu_sent_per_line.txt"

with open(sotu,'r',encoding="utf8") as f:
plain_text = f.read()

sentences = plain_text.split("\n")

Training a model – toy example

tokenized = []

for sentence in sentences:
tokens = sentence.strip().lower().split(" ")
tokenized.append(tokens)

model = models.Word2Vec(tokenized, min_count=2, size=50)

print(model['america'])
-- [0.17634061 0.58502656 0.27098337 -0.17523931 -
0.24094008 -1.72932017 …]

Training a model – toy example

Is 'america' more similar to 'country' or 'goal'?
print(model.wv.similarity('america', 'country') >
model.similarity('america','goal'))

-- True

Let's find the most similar words to 'america'
print(model.wv.most_similar(positive=['america'],topn=3))

-- [('world', 0.7713112235069275), ('nation', 0.737435519695282), ('freedom', 0.72567957639691)]
-- [('world', 0.7955950498580933), ('freedom', 0.7540770173072815), ('nation', 0.73620635271072)]
-- [('nation', 0.85256427526474), ('best', 0.8303712606430054), ('future', 0.8137349486351013)
…

Training a model – toy example
What's a leader/king like?
print(model.wv.most_similar(positive=['leader','king'],topn=2))
-- [('elected', 0.9522648453712463)]
-- [('emperor', 0.8519768714904785)]

What if we're looking for words more distant from king?
print(model.wv.most_similar(positive=['american','leader'],
negative=['king'],topn=2))
-- [('freedom', 0.8039842247962952)]
-- [('human', 0.6412678956985474)]

Spot the odd one out
print(model.wv.doesnt_match(["france","germany","car","japan"]))
-- car

Much bigger in real life…
 These examples come from less than 2M tokens / 10 MB of

text – often rather bad!
 You can use ready-made examples from Google, Wikipedia,

…
• Google Word2Vec text is 3.6 GB, popular trimmed News version ~80MB
• GloVe 300D pre-trained embeddings ~1GB (Paddington et al.)
• BERT Base even larger, BERT Large has 345M parameters based on 3.5G

words, takes about 4 days on 16 cloud TPUs
(~about 100 mile car drive of electricity!)

 Not trained on the fly – used as saved trained models
 Typically held in memory, not loaded for each function call
 Still slow to load on a laptop, require high GPU RAM

Gensim lets you train your own medium sized models!

Beyond word similarity

Word embeddings are now one of the most
popular ways of representing text:
• Feed tools embeddings instead of words
• Probabilities based on vector dimensions – allows

reasonable behavior for OOV items
• Open to mathematical operations:
 Sentence meaning = avg. of word vectors?

 Classify sentence sentiment using vectors?

 Discourse segmentation via differences in sentence
meaning?

 …

Using them in language models

 In a feed forward network we could do:

Jurafsky & Martin (2017)

Using memory

Recent neural models use memory based
architectures (Recurrent Neural Networks -
RNNs) or attention weights (Transformers)

Popular type: Long Short Term Memory
(LSTM) networks
• RNN cells don’t just get input ‘synapse’ weights, but

also activate themselves
• Allows cells to remember previous states
• In LSTMs: cells also learn when to forget what they’ve

seen

13

LSTM cell structure

14

Greff et al.
(2015)

What can LSTMs do?

 Intuitive example: character level sequence to
sequence modeling

Example – trained on Shakespeare:

15

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

What can LSTMs do?

 Intuitive example: character level sequence to
sequence modeling

Example – trained on Wikipedia:

16

Naturalism and decision for the majority of Arab countries' capitalide was grounded by
the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated with
Guangzham's sovereignty. His generals were the powerful ruler of the Portugal in the
[[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom of
Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known in
western [[Scotland]], near Italy to the conquest of India with the conflict. … Many
governments recognize the military housing of the [[Civil Liberalization and Infantry
Resolution 265 National Party in Hungary]], that is sympathetic to be to the [[Punjab
Resolution]] (PJS)[http://www.humah.yahoo.com/guardian.
cfm/7754800786d17551963s89.htm

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

/*

 * If this error is set, we will need anything right after

that BSD.

 */

static void action_new_function(struct s_stat_info *wb)

{

 unsigned long flags;

 int lel_idx_bit = e->edd, *sys & ~((unsigned long)

*FIRST_COMPAT);

 buf[0] = 0xFFFFFFFF & (bit << 4);

 min(inc, slist->bytes);

 printk(KERN_WARNING "Memory allocated %02x/%02x, "

 "original MLL instead\n"),

 min(min(multi_run - s->len, max) * num_data_in),

 frame_pos, sz + first_seg);

 return disassemble(info->pending_bh);

}

static void num_serial_settings(struct tty_struct *tty)

{

 if (tty == tty)

 disable_single_st_p(dev);

 pci_disable_spool(port);

 return 0;

}

What can LSTMs do?

Example – trained on Linux source code:

17

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

What are these cells learning?

18

Training your own

A relatively simple model works out of the box
using PyTorch:
• pip install torch

• https://github.com/pytorch/examples/tree/master/wo
rd_language_model

Other good libraries: Tensorflow, Keras

https://github.com/pytorch/examples/tree/master/word_language_model

Bonus fun

You can test AllenNLP’s neural LM here:
• https://demo.allennlp.org/next-token-lm

And you can chat with a neural network
trained on conversational pairs

Example:
• http://neuralconvo.huggingface.co/

• (also compare Microsoft’s TAY:
https://twitter.com/tayandyou)

20

https://demo.allennlp.org/next-token-lm
http://neuralconvo.huggingface.co/
https://twitter.com/tayandyou

Do neural LMs solve all problems?

Generated on
2021-10-18

More information

We will learn more about practical applications of
neural networks later

 Learning how neural models work in depth is
outside the scope of this course
• Jurafsky & Martin 2017, C7 is a good starting point
• Grad students: once you are confident in coding,

consider taking LING-504/COSC-576
 Further reading:

• Jurafsky & Martin (2017, C7)
• Hands-on Machine Learning with Scikit-Learn and

TensorFlow / A. Geron, 2019
(https://github.com/ageron/handson-ml)

22

https://github.com/ageron/handson-ml

A more abstract view of ngrams

What do language modes really ‘model’?
• Probabilities of individual words

• Probabilities of sequences of words

How is our language model using them?
• Get transitional possibilities probabilities

• What are the odds of moving from word X to word Y?

➢We’ve seen something like this before…

Transitional probabilities

Moving through a language model is like
progressing in a web of words:
• Let's say I type the word "Give" into my smartphone’s

message app

• This is a job for the auto SMS wizard! ☺

• Here's what happens when I click next, next…
 Give me a bit better than the bus and should be there in a

couple of days ago…

Language models as FSAs

 Language model choices are probabilistic – different
from deterministic FSAs

 But we can represent them as weighted automata:

?-gram model??

Markov Chains

 A set of ordered variables with probabilities following
the Markov Property:
• The probability of each value of Xi in the sequence depends

only on Xi-1

• (Or in variants: some other sufficiently small number:
second order Markov Model, third order… etc.)

• In other words: context effects are limited, but can chain

• Formally: P(Xi =x| Xi-1 =x1, Xi-2 =x2,…) = P(Xi =x| Xi-1 =x1)

 This is a shameless, but very useful simplification! ☺

26

An example

 Suppose the difficulty of a homework assignment
is influenced by the previous one
• If the last assignment was easy, this next one will be hard

with 70% probability (but 30%: easy)
• If the last one was hard, 60% that the next will be easy (but

40%: still hard)
Results are uncertain, but depend only

on last time
Globally we still model a process where difficulty

alternates across the chain

➢ This works not just for words!!

27

The Markov property assumption

Note n% transition depends only on the
current state

We get a 'plausible' sequence overall
What we need for this:

• Probabilities of each P(wk|wk-1)

• Smoothing for missing values

➢We know how to get these for words, but
what about other categories?

28

Beneath the surface

Token n-gram models represent transitions
between actually observed characters/words

We can call them Visible Markov Models
(VMMs)

Besides properties that are overt, we are
interested in the probabilities of hidden
categories

These will require Hidden Markov Models
(HMMs)

29

Invisible categories

Which categories are hidden?
• We may not be interested in a specific adjective like

number (than)
• We might want to know the likelihood of any

comparative adjective at this position
• Or the probabilities that words refer to a company, or

have positive sentiment, or …
• How can we look at categories that are not in the data

explicitly?

Let’s look at an example

30

POS tagging

Probably the most widely used ‘hidden’
category in NLP
• Assume each token has exactly 1 correct part of speech
• We can’t see it, but it’s there
• If we knew the POS tags of a text, we could create

n-gram models describing them:
 ART ADJ N → NP trigram!

 TO ADV V → split infinitive!

➢What tags are there?

31

Tag sets for English

Common in the US:
Penn Treebank Tagset (PTB) 36 Tags
Extended PTB (AMALGAM/TT) 56 Tags

Common in the UK:
CLAWS 5 62 Tags
CLAWS 7 137 Tags

Other notable mentions:
Brown tag set 85 Tags
Google “Universal Tags” (V2) 17 Tags

32

The PTB tag set (vanilla)
CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or conjunction
JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative
LS List item marker
MD Modal

NN Noun, singular or mass
NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun

PRP$ Possessive pronoun
RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative
RP Particle
SYM Symbol
TO to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person sg. present
VBZ Verb, 3rd person sg. present

WDT Wh-determiner
WP Wh-pronoun

WP$ Possessive wh-pronoun
WRB Wh-adverb

33

Tagging exercise

Tag the text: Is ISIS Going Broke?
• What’s easy and what’s hard?

• How do we determine the correct tag?

• How can a computer do it?

34

The PTB tag set

There is a lot to be said about the PTB tag set
• Successes and shortcomings

• Extensions since its inception – notably through the
AMALGAM project (2001), TreeTagger, OntoNotes,
English Web Treebank…

We don't have time to discuss these…
For this course: PTB (a.k.a. vanilla PTB) will be

our only tag set for English (more: LING-367)

35

