
LING-362

Introduction to
Natural Language Processing

Syntactic parsing III

Review - CKY

Tokens at the top of the table

The boys shop daily

Dynamic programming – CKY

Check bottom of column for possible
categories for each token

The boys shop daily

DT

Dynamic programming – CKY

Check intersections in higher rows:
• Is this a possible segmentation?

• Only binary branching grammars allowed
(Chomsky Normal Form – CNF)

The boys shop daily

DT

NNS

Dynamic programming – CKY

Unambiguous – no problem

The boys shop daily

DT NP

NNS

Dynamic programming – CKY

For ambiguous cases, we must keep track of
what goes with what

The boys shop daily

DT NP S | S

NNS NP

VBP | NN VP

RB | NN

Derivation
does not

terminate!

Choosing the right parse

All an algorithm like CKY does for us so far is
check for possible positions to split into
phrases
• Useful in many contexts (CKY can be applied to Chinese

word segmentation! Qian & Liu 2012)

• Genome mapping (see Poptsova 2014)

• …

How can we decide which parse is right?

From CFGs to PCFGs

We can amend our definition to include
probabilities – a Probabilistic CFG:
G ≡

N Set of non-terminal symbolds

Σ Set of terminal symbols (not in N!)

R Set of rules of the form A → β [p]
where A ∈ N, β ∈ (Σ∪N)*
and p is the probability P(β|A)

S The designated start symbol

From CFGs to PCFGs

Probabilities?
• We can treat the proportion of each decomposition of

each category as its probability
 NP > DT NN: 35%

 NP > NNS: 20%

 NP > PRP: 20%

 NP > DT JJ NN: 10%

 …

100%

This sounds like a great idea!

Even if we have lots of spurious generations in
our data, the parser will never choose them!
• Sure, these constituents are licensed by the grammar:
 (ADVP (NP (NNS finishes))))

 (NP (DT the) (NP (NNS finishes)))

• But they are very unlikely

• This is good news, right?

..parser will never choose them?

The problem with ‘very unlikely’ in CFG is that it
effectively means never

Consider legitimate ambiguities:
• PP attachment:
 I [saw [the man with the telescope]]

 I [saw [the man] [with the telescope]]

• PCFG level view:
 VP > V NP 65%

 VP > V NP PP 35%

➢ Incapable of ever getting high attachment!

Structural and lexical dependencies

Which rules we apply depends on:
• Lexical information (some verbs often have a high

attached instrument and some prepositions mark
these, e.g. break X with Y)

• Non-terminal, structural context: pronoun NPs are
much more likely as subjects than objects

How can we get these into our grammar

Band-aid 1

We can annotate each internal node with its
parent: (Johnson 1998)
(S

(NP (PRP I))

(VP (VBD was) (VBG calling)

(NP (DT a) (DT no) (NN brainer))))

Band-aid 1

We can annotate each internal node with its
parent: (Johnson 1998)
(S

(NP^S (PRP I))

(VP^S (VBD was) (VBG calling)

(NP^VP (DT a) (DT no) (NN brainer))))

Parent Annotation

Pros and cons

Adding parent information effectively causes
label splitting
• Leads to data sparseness: less examples of each label
• Some splits are useful, others are harmful – how can

we tell?

➢ Initial attempts at choosing the right cases to
split required a lot of manual work

➢But paid off for English: 72% -> 86% accuracy
(Klein & Manning 2003)

Why choose ourselves?

Petrov et al. (2006) devised the split and
merge algorithm
• Automatically testing splitting of categories (88.4%)

• Automatically merging categories (89.5%)

• Best result with smoothing (90.2%)

• State of the art into the 2010s, when neural networks
and distributional semantics were added

Excursus: cognitive implications

 It is very clear that we know more than CFGs
• Lexicalized effects in processing, garden path sentences

• Humans not bogged down by massive ambiguity
options, unless lexical items collude with syntax
 I saw the man with the telescope

 The cop chased the criminal with the fast car

Excursus: cognitive implications

What tree depths are we tracking?
• According to Bod (2009), allowing a language acquisition

simulation to condition on depth 4
trees is optimal

• Learning based on PTB and
CHILDES (MacWhinney 2000)

• Computers reproduce
children’s errors! ☺

Band-aid 2

Even label splitting doesn’t help with lexical
probabilities
• Does is matter for PP attachment that the preposition

is with?

• Does it matter whether the verb is chased or saw?

Lexicalized grammars

An easy way to bring in lexical information is to
annotate each node with its lexical head
(head percolation)

Lexicalized grammars

 In practice, most lexicalized parsers work on
percolated head+POS annotation

State of the art choice when data is limited/no
large word embeddings available

Quick exercise

What needs to percolate where?

Data sparseness

A major problem with the lexicalized approach
is sparseness

We hardly get probabilities for rules like this:

VP[calling,VBG] > VBD[was,VBD] VBG[calling,VBG] NP[brainer,NN]

Generation probabilities

 Instead of considering the full rule:
• VP[calling,VBG] > VBD[was,VBD] VBG[calling,VBG] NP[brainer,NN]

We can pretend that the head gets generated
first:

• VP[calling,VBG] > VBG[calling,VBG]

This part is still trivial but…

Generation probabilities

 Imagine we now consider each additional RHS
component separately:
• What is the chance that VBG[calling,VBG] has

NP[brainer,NN] to the right?

• P(NP[brainer,NN]|VBG[calling,VBG])

• Maybe also not so common – but more so than an entire
rule

Generation probabilities

We repeat this for all possible RHS members to
the right of the head

And do the same on the left

VP[calling,VBG] > VBG[calling,VBG]
VBD[was,VBD] ? VBG[calling,VBG] →? NP[brainer,NN]

Generation probabilities

What if there are two options?
• calling > was calling NPbrainer

• calling > was calling #

We need to consider ‘end of the line’ as an
item for probability estimation
• Add ‘fake’ RHS member “STOP”

• Estimate probability of stopping generation

Implementation: Collins Parser

The Collins parser implements this approach:
• Estimate probability for lexicalized decomposition rules

• Separately calculate probability of adding potential
RHS constituent until STOP symbol is generated

In Python

There are many parsers out there
Many developers use the Stanford Parser

• Written in Java

• A Python ‘wrapper’ exists

• But you can really run any Java tool from your code!

Calling the command line
import subprocess

command_params = ["java", "-mx2048m", "-cp" ,'"*;"',
"edu.stanford.nlp.parser.lexparser.LexicalizedParser" ,...]

proc = subprocess.Popen(command_params)
(stdout, stderr) = proc.communicate()

your parse is now in stdout

In Python

Another option is spacy

• pip install spacy
• python -m spacy.en.download (takes long!)

See https://spacy.io/ for a tutorial!

For latest SOTA constituent parsers (not user
friendly):
• http://nlpprogress.com/english/constituency_parsing.html

https://spacy.io/
http://nlpprogress.com/english/constituency_parsing.html

In Python

And many applications use dependency parses
either instead of or in tandem with
constituents

Not covered in this course -> see LING-367 and
more advanced classes

