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N-grams and language Models II



Homework assignment - structure

For the morphology homework:
• We used a machine-readable dictionary to keep code 

clean

• Python script reads in lexical resource (use open and 
.read(), filename from argparse)

• Creates an object to handle task: transducer

• Applies method of object to each input, returns
outputs

Typical workflow for many tools!



Quick reminder: probabilities

 If two events A, B, are independent, then:
• p(A|B) = p(A)

For independent events, the chain rule applies: 
• p(A&B) = p(A)*p(B)

For example:
• P(⚃ & ⚅) = 1/6 * 1/6 = 1/36



Quick reminder: N-gram models

A very simple (and efficient) way of modeling 
context is using n-grams
• Decide on a useful context size, often 3 words

• Save analyses not of individual words, but of words 
given the previous 2 words – trigram model

Image:  
googlesystem.blogspot.com



Building our own!

Consider the following texts, 
by Charles Dickens*:

bigram model trigram model 4-gram model

*sort of

depose to linger yet, 
pointing upward 
! ' are melting 
from me, pointing 
upward

signature under such 
circumstances, Mr. 
Mell, formerly poor 
pinched usher to my 
Middlesex magistrate

that I stole into the 
next street, and 
open a chemist's 
shop? Whether he 
could

[Wikimedia]



DIY natural language generation!

Let's create Dickensian stories
We need:

• Dickensian training data and a way to read it

• Random selection

• A mechanism to choose best output for a story of a 
certain length

Download:
• ngrams.py

• dickens.txt



Reminder – reading files
parser = argparse.ArgumentParser()
parser.add_argument("file")

options = parser.parse_args()
training_file = options.file

a = open(training_file).read()

with open(training_file,'r') as f:

training_data = f.read()

…

counts = get_counts(context_length, training_data)



Learning the frequencies

To track frequencies of n-grams, we’ll need a 
dictionary tracking counts like this:
• Key: “In”, “the”
 Value: another dictionary:
 Key: “beginning”, value: 2

 Key: “end”, value: 5

 …

• The function get_counts() should build this dictionary



Learning the frequencies

 It looks like we could use a list for the key:
freqs[["in","the"]] = {"end":5, "beginning": 2}

Actually, this is forbidden:
• Dictionary keys must be immutable
• List values could be changed: 
 We could change the second list member of [“in”, “the”]

my_key = ["in","the"]
freqs[my_key] = 5

my_key[0] = "by"

 Dictionary would be broken



Tuples: not quite Lists

Python has a cousin data-type to lists: tuples
• Tuples are like lists, but they are immutable

• Once defined they can’t be changed

• Look a lot like lists in round brackets:

# This is a list:
a = ["in", "the"]

# This is a tuple:
b = ("in", "the")



Tuples: not quite Lists

 In practice, tuples are used:
• When an immutable data type is required

• In contexts where something like a list:
 Has a specified, invariable length

 Each position has a predictable meaning

Example: person’s height, weight and age:
# Don’t need to append or change these:

stats = (175, 72, 43)



get_counts()
def get_counts(context_length, training_text):

counts = {}

tokens = word_tokenize(training_text)
for i in range(len(tokens) - context_length):

context = []
next_token = tokens[i + context_length]
for j in range(context_length):

context.append(tokens[i + j])

# Add 1 to frequency or create new dictionary item for this tuple
if tuple(context) in counts:

if next_token in counts[tuple(context)]:
counts[tuple(context)][next_token] += 1

else:
counts[tuple(context)] = {next_token: 1}

else:
counts[tuple(context)] = {next_token: 1}

return counts



generate_from_file(context_length,training_file,output_length=10)

first_tokens = choice(counts.keys())  # Choose a random first context
output_list = list(first_tokens)
current_context = first_tokens

for i in range(output_length):
next_context = max(counts[current_context], key=counts[current_context].get)
temp = list(current_context)
temp.pop(0)  # Remove first token in previous context
temp.append(next_context)  # Add new token for the next context
next_token = temp[-1]
next_context = tuple(temp)

current_context = next_context

output_list.append(next_token)

print(" ".join(output_list))



Spot the genre

these changes into our other midmarket power 
forms . Thanks again for your help on this . Carol 
St. Clair EB 3889 713-853-3989 ( Phone ) 713-
646-3393 ( Fax ) carol.st.clair @ enron.com All , 
Please see the attached Interconnect Agreement 
with Questar . Transwestern will own and 
operate the interconnect . Questar may be able 
to purchase material , but some of



Spot the genre

Furies , and I 'll be as good as my word ; but 
speciously for Master Fenton . Well , on went he 
for a search , and away went I for foul clothes . 
But mark the sequel , Master Brook-I suffered 
the pangs of three several deaths : first , an 
intolerable fright to be detected with a jealous 
rotten bell-wether



Spot the genre

ambush in her system , ready , at the corner of 
the street , with his great kite at his back , a very 
monument of human misery . My aunt went on 
with a quiet enjoyment , in which there was very 
little affectation , if any ; drinking the warm ale . 
'She 's the most ridiculous of mortals . But



Homework

Due by end of Friday, October 22
Longer project - improve the n-gram generator

1. Add an argparse argument to set context length 
(default : 2). Note that parameters default to string, 
so use int() [2 pts]

2. Add an argument to set the starting ngram: [6 pts]
 User can specify to start the story with "The woman"

 Note parameter may contain spaces so surround it with 
double quotes in your configuration, for example:

 > python ngrams.py --starter "The woman"



Homework

2. (ctd.)
 Tokenize the starter n-gram via word_tokenize() and feed 

it to the generator as a tuple instead of:
choice(counts.keys())

 If the starter n-gram is not specified, use choice() as 
before

 If it’s too short or long (compared to context length), print 
a warning and quit:

import sys

…
if … :

print("some sensible warning")
sys.exit(0)



Homework

3. Handle n-grams not in the language model [4 pts]
 It’s possible the user wants to start with "Twas brillig", but 

that’s not in the training data

 Check to make sure the input as a tuple, e.g. ("Twas", 
"brillig"), is a known key in the counts dictionary

 If not, print the user’s starter n-gram followed by a 
period; then continue generating from a random starter 
via choice()

> python ngrams.py -s "Twas brillig" dickens.txt
Output: 
Twas brillig . It would be much more easy to be born a Jackson



Homework

Extra credit challenges: [2 pt each]

• If starter n-gram is longer than context length (e.g. the 
user specifies context = 2, but to start with “The young 
man”), print the first words until only the right amount 
of tokens remains (in this example print the initial 
‘The’, then start generating with the bigram ‘young 
man’, if it’s in counts)

• Check whether a user-specified initial n-gram ends in a 
punctuation token; if so, proceed as before but 
without adding the period.



More about language models

For predictive modeling of language, n-gram 
models can be very effective

We can calculate the probability of any 
sequence of words, given training data:

P(w1,w2 … wk) = P(w1)*P(w2|w1)*P(w3|w1,w2)… 

=ෑ

𝑘=1

𝑛

𝑃 𝑤𝑘|𝑤1…𝑤𝑘−1



How good will our model be?

To measure the quality of a model, we'd like to 
know how well it fits a certain data set

What kind of language is easy to model?
• If the language we are modeling has only one word, it's 

perfectly predictable:
 Spam spam spam spam spam ….

• If it has 1,000,000 different equiprobable words, it's 
very hard to model

• If it has 1,000,000 different words but…
 Spam spam spam spam spam furry spam 



How good will our model be?

How can we measure this predictability?
We can use a given model to assign a 

probability to some data
• We know how to get P(w1,w2, … wn)

• As we use the chain rule, the probability will get very 
small (each multiplication creates a tiny fraction)

• We take the -Nth root for N such multiplications – this 
is a measure called…



Perplexity

For many purposes, we will want to know 
what the likelihood of a sequence of tokens is:
• Evaluate likelihood of suggested translations / NLG
• Recognize text type (does this look like a newspaper 

article?)
• Recognize dialect/variety/non-native language
• Predict performance in domain adaptation
• … and much more!

We need to measure how ‘surprising’ a text is 
given some training data for comparison



Perplexity (PP)

Measured in general:

For a bigram model:

For a trigram model:

𝑃𝑃 𝑡𝑒𝑥𝑡 =
𝑁 1

𝑃(𝑤1…𝑤𝑁)

𝑃𝑃 𝑡𝑒𝑥𝑡 =
𝑁

ෑ

𝑖=1

𝑁
1

𝑃(𝑤𝑖|𝑤𝑖−1)

𝑃𝑃 𝑡𝑒𝑥𝑡 =
𝑁

ෑ

𝑖=1

𝑁
1

𝑃 𝑤𝑖 𝑤𝑖−1 𝑃(𝑤𝑖−1|𝑤𝑖−2)



Perplexity (PP)

Example: spam language

• PP(spam*10) =
10 1

1∗1∗..∗1
= 1

Example: million word language

• PP(a,b,c..j)=
10 1

0.0000001∗..0.0000001
= 1000000

Example: furry spam language

• PP(spam..furry,spam)=
10 1

0.999∗..0.0000001∗0.999
=3.98



Exercise – make up a text

Can you make up a sentence that is:
• Bad English but rates low on perplexity
• Good English but rates high on perplexity

 For this text, using A. unigrams B. bigrams:
If you go out in the woods today
You're sure of a big surprise.
If you go out in the woods today
You'd better go in disguise.

For every bear that ever there was
Will gather there for certain, because
Today's the day the teddy bears have their picnic.



Unigram example

Good English, high model perplexity:
• When I venture into the forest tonight

I’ll be very surprised…

Bad English, low perplexity:
• If bears woods picnic you you you today woods…



Bigram example

Good English, high model perplexity:
• Had I gone strolling through the forest I should have 

worn a disguise

Bad English, low perplexity:
• You’d better a big surprise if you sure of a disguise. the 

woods today’s the day the woods today



Can we always know P(wi)?

A problem with perplexity (and language 
models in general) is knowing P(wi)

Words can be formed productively:
• dancerliness

• slacktivism

• …

These words are out-of-data or out-of-
vocabulary ("OOV" words)
?? How can we assign them a probability ??

𝑃𝑃 𝑡𝑒𝑥𝑡 =
𝑁

ෑ

𝑖=1

𝑁
1

𝑃(𝑤𝑖|𝑤𝑖−1)



Smoothing

We can assign some small frequency to each 
word in the text we're evaluating

 Simplest option: add 1
This is called: Laplace Smoothing

• Pro: very simple to do
• Con: overestimates likelihood of OOV items –
 in reality the likelihood of any particular OOV item is not half that 

of an item that occurs once (1+1 = 2*1)
 error is compounded in n-gram models (each OOV item has 

likelihood of combining with other items…)

we can take another small number (δ smoothing), 
but which?



Smoothing

A better entry-level smoothing algorithm is to 
estimate the likelihood of rare items
• How often does a new item occur?

➢Every time a new item comes along, it's unique – a 
hapax legomenon (Greek: said once)

➢To estimate the likelihood of a 'surprise' we can check 
how often we were surprised in the past



Smoothing

Good-Turing Discounting:
• Likelihood of each OOV item = hapax / N

• Similar insights in productivity studies (Baayen 2009) –
likelihood of novel word formation

To smooth, we first check how many unique 
items are in the training data / data size
• Assign this small fraction to each OOV item we meet in 

the test data

• Discount the probability of other data so that sum is 1



How to get perplexity in practice?

We will need:
• Some training data again, to base our model on

• Some test data to calculate perplexity for

• Calculate probabilities for all possible training 
sequences

• Assign probabilities for product of text occurrences

• Add smoothing in unknown cases



Perplexity – training data

import nltk

# Some data to make a model out of
# We can read this from a file too!
text  = """Mary had a little lamb,
His fleece was white as snow,
And everywhere that Mary went,
The lamb was sure to go.
… ."""

tokens = nltk.word_tokenize(text)



Perplexity – a unigram model
def unigram(tokens):    

# Token list in, model out…

model = {}
for tok in tokens:

# Check if we've seen this token before
if tok in  model:  # If we have, increase it's frequency by 1

model[tok] += 1
else:  # If we haven't, assign a frequency of 1

model[tok] = 1

for word in model:

# Normalize probabilities so they sum up to 1
model[word] = model[word]/float(len(model))  # Python 2 compat.

return model



Perplexity – computing
def compute_perplexity(data, model):

data = nltk.word_tokenize(data)
perplexity = 1  # Initialize value: starting is P = 1
N = 0
for word in data:

N += 1
if word not in model:

model[word] = 0.00001  # Rudimentary delta smoothing
perplexity = perplexity * (1/model[word])

perplexity = perplexity ** (1/float(N))  # ** means power
return perplexity



Perplexity – real examples
text0 = "a little lamb had Mary"
text1 = "This is a story about a lamb with white fleece who went to 
school."
text2 = "On the other hand if we just talk about cheeseburgers etc. the 
model will be more perplexed!"
text3 = "Mais si on n'a pas des mots anglais c'est plus mauvais"

model = unigram(tokens)
print("All vocab in: " + str(compute_perplexity(text0, model)))
print("Some vocab overlap: " + str(compute_perplexity(text1, model)))
print("Same language: " + str(compute_perplexity(text2, model)))
print("French: " + str(compute_perplexity(text3, model)))



Perplexity – real examples
Output:

All vocab in: 30.6394384791

Some vocab overlap: 507.341574812

Same language: 16556.6079309

French: 100000.0


