LING-362

Introduction to
Natural Language Processing

\ BACKSLASH

A\ REAL BACKSLASH

W\ REAL REAL BACKSLAGH

AN ACTUAL BACKSLASH, FoR REALTHIS TIME

AN\ ELDER BACKSLASH

MWW BACKSLASH LHICH ESCAPES THE SCREEN AND ENTERS YOUR BRAIN
ALMANANN BACKSLASH S0 REAL IT TRANSCENDS TIME AND SPACE

AAAANAAN BACKSLASH To END ALL. OTHER TEXT

WAWWWW .. THE TRUE NAME OF BAAL, THE SOUL-EATER

A word about new files and projects

® You don’t have to create a new project (a bit
like a folder) ever time

@ You can create a New... > Python file

® Different projects may have different pythons!

Environmen t

F||e Edlt VIEW Navigate Code Environment variables: PYTHONUNBUFFERED=1

) Python interpreter: & Project Default (Python 3.9)
New Project...

1::
<

n e Project Default (Python 3.9)

MEW... e Python27
- W @ Python 3.6
New Scratch File Ctrl+Alt+S
€, Python 3.8 (python)
v
= Open.. @ Python3s

~ g, Python 3.8 (end2end_neural_el)

—
O
Q

=

@]
| -
o
-
|

Save As... €, Python 3.6 (end2end_neural_el)

Attach project... @ Python3.9

v

Open Recent

ucture

Key terms from Jurafsky/Martin

® False positive / negative

e Accuracy -> precision
e Coverage -> recall
® Some extra regex tricks: (caps for opposite)

e \b a 'word boundary'
e \d a digit

e \wW a 'letter’

e \s whitespace

e x{n,m} specify n to m repetitions of previous

A neat site to test these

® You can test your regex at:
e http://regexr.com/

® Note the 'multiline’ flag if you're using anchors
(" and S)

http://regexr.com/

Using RegEx in Python

® Specific groups
>>> import re

>>> matchl = re.search("b([aeiou])"”,"brambular")
>>> matchl.group()

lbul
>>> match1.group(1) (...)

u
>>> re.sub(r'\(', '-LRB-', '(see')
'-LRB-see’

|-

Regex group substitution

® We can grab stuff out of matches with \1, \2..
® Note the raw string (otherwise: \\1, \\2)

>> word = "bombastic"

>> word = re.sub(r'(b[aeiou])’, r'\1\1', word)
>> word

'bobombabastic'

® The number \1 always refers to the first part of
the pattern in brackets (\2 is the second brackets,
if available, etc.) — like group(1) etc.

self
@ t+1 o t+2 @
| -

Now tokenization for real

® How does NLTK's tokenizer work?

e Actually you can almost read the code right now!
e Here's the important stuff

nltk.tokenize.treebank

® Note the use of def some_function(argl,arg2,...):

import re

def tokenize(text, CONTRACTIONS2, CONTRACTIONS3):

text = re.sub(r'r\"', r'""’', text)
text = re.sub(r'(*’)", r' \1', text)
text = re.sub(r'([(\[{<])"', r'\1 7', text)

self
(3

@ - o - @
[.

v

nltk.tokenize.treebank (adapted)

#punctuation

text = re.sub(r'([:,1)([*\d])’, r' \1 \2', text)
text = re.sub(r'([:,])S", r' \1 ', text)

#...6 more

#parentheses, brackets, etc.

text = re.sub(r'((NI\[\(\)\M\\<\>])', r' \1 ", text)

text = re.sub(r'--', r' -- ', text)

#add extra space to make things easier
text="""1+text+""

self
@ t+1 o 12

y

nltk.tokenize.treebank (adapted)

Ending quotes
text = re.sub(r'’, " " ", text)
..

Contractions

text = re.sub(r" ([1)('[sS]]'[mM]]'[dD]|') ", r"\1\2 ", text)

text = re.sub(r"([' 1)('II|'LL|'re|'RE]|'ve|'VE|n't|N'T) ", r'"\1 \2",
text)

self
@ t+1 o 12

nltk.tokenize.treebank

for regexp in CONTRACTIONS2:

text = re.sub(regexp, r' \1 \2 ', text)
for regexp in CONTRACTIONS3:

text = re.sub(regexp, r' \1 \2 ', text)

return text.split()

Not easy to follow, but...

@ This is actual working code for entry level
tokenization
@ Just uses RegEx!!

® Full code here:
http://www.nltk.org/ modules/nltk/tokenize/treebank.html

» More professional options out there too
(notably Stanza, SpaCy, the TreeTagger
tokenizer in Perl or in Python here)

» Special tools for more challenging languages

self
@ t+1 o t+2 @
|

http://www.nltk.org/_modules/nltk/tokenize/treebank.html
https://github.com/amir-zeldes/HebPipe/blob/master/lib/whitespace_tokenize.py

Exercise: Phone number scraper

® Download phones.py from Canvas
e Fix the script so it finds all phone numbers in the text
e Some of the steps have been done for you

e Bonus question: can you print out all the numbers in a
uniform format?

Basic solution

lines = text_about_phones.split("\n")
phone_pattern = r'(\(?[0-9]+\)? ?)+

for line in lines:
potential_match = re.search(phone_pattern,line)
if potential_match is not None:
phone_number = potential _match.group()
print(phone_number)

Phone number scraper

® Basic scraper workflow:
e Get some text

e Go through it line by line:
one option - make a list:

line_list = my_string.split("\n")
for line in line_list:

e Search for something with regex
e Collect capturing groups in a list for output

A word about files

® Normally text_about _phones is from a file
® To open a file, Python needs to know its name
® The file’s name is a folder path, and can be:

e Absolute:
[/Users/Kim/nlp/phones.txt (Mac/Linux)
C:\Users\Kim\Desktop\phones.txt (Windows)

e Relative: nlp/phones.txt (terminal is in /Users/Kim/)

e Just the file name: phones.txt - Python will look for the
file in the script’s directory

® How can the user supply this information?

@ - o - @

Building block - reading files

from argparse import ArgumentParser

parser = ArgumentParser()
parser.add_argument(“file")

options = parser.parse_args()
phone file = options.file

text _about _phones = open(phone_file).read()

Cleaning up the number

def clean_number(number_text):
i / dOCString
:param number _text: string containing a phone
number and special characters: (, +,)
:return: cleaned: string without special characters

min

cleaned = re.sub(r"[\+ \(\)]","", number_text)
return cleaned

Cleaning up the number

if potential_match is not None:
phone_number = potential _match.group()
clean = clean_number(phone_number)

if len(clean) > 6:
print(clean)

How about recognizing the country?

® A list of numbers is nice but...

®In some cases, lists are not enough:

e Suppose you want to know what country these
numbers come from

e You recognize the prefix using r'\+[0-9]+'
e |t would be neat if we could 'look up' what country this
comes from

e We'd need a dictionary

self
(3

@ - o - @
[

Dictionaries

@ Dictionaries are like lists, but they don't map
from index position to value:
e shopping_list[1]
® Instead they map keys to values:
e grocery_type['broccoli']
'vegetable'

Dictionaries

® To make a dictionary, we specify the mapping of
keys to values:
prefixes — II+1II:IIUSII’ "+972":"|L"’ II+63II:IIPHII}

® We can also add some later:
prefixes["+52"] = "MX"

® And access them:

some_pref = "+52"
country = prefixes[some_pref]

@ - o - @

Exercise for after class

® You can try adding functionality to the number

scraper (no need to submit):

e Start by creating a dictionary of some prefixes:
prefixes = {}
prefixes['52"] = "Mexico"

e Capture the +123 part of phone numbers if it appears

e If you captured a prefix for the current number, output the
country instead of the prefix, then the rest of the number:
this_prefix = matcher2.group(1)

print(prefixes[this_prefix] + " " + number_without_prefix)

'‘Mexico 015512345678

se
@ 1 o 2 @
-

How to check if you know the prefix?

@ This can cause an error if you've never seen
+345:
print(prefixes["345"])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: '345'

® Instead check first:

if "345" in prefixes:
print(prefixes["345"])

self
@ t+1 o t+2
b

What else can we do with regex?

® Regular expressions are a very powerful way of
defining and manipulating patterns of strings

® For some applications regex can get you very
far

@ Is regex enough to make a talking computer?
® What would constitute one in your opinion?

The Turing Test

® Test devised by Alan Turing (1950)

e See whether computers can communicate
e By proxy whether they are intelligent
® Original test:

e Computer substitutes participant in the "imitation
game", in which a man/woman try to fool a judge
about their gender

® Revised test:

e Person and computer try to convince judge that they
are a human

self
@ t+1 o t+2 @
|

Turing Test

® The best known implementation is the
Loebner Prize (https://aisb.org.uk/new site/?page id=2)
@A little like a mini-nobel prize for NLG/dialogue

systems
e Running since 1990 (last year on hiatus)

e Small prizes for 'best' program

e Larger one time prizes:

$25,000: judges can't distinguish program from human
$100,000: same including A/V input

self
@ t+1 o t+2 @
|

https://aisb.org.uk/new_site/?page_id=2

Spot the not (blue is human)

Hello, my name is Andrew. What’s your name?
- Hello Andrew nice to meet you, my name is Amos

- Hello there. Your name is Andrew. My name is Millie.
- Why don’t you tell me a little more about yourself ?

- No, | am rather shy

- My name is Millie and | am a human volunteer for the Loebner Prize. | live in Leeds and
am single. | am interested in Al but don’t have a chatbot myself. What about you?

-l am a researcher in Artificial Intelligence at Goldsmiths University, do you
know what that is?
- Of course, it is designation title is self explanatory!

- Do you enjoy your research? | am a volunteer who has agreed to help with a Turing test.
- Will you tell me about your dreams?

- Sure, what would you like to know?

- I dream that | will pass my university exams.
- Canyou rephrase that?

- Yes | will, what would interest you about my dreams?
- No, not really. What don’t you understand?

Spot the not (blue is human)

- What is my occupation?
- You are one for changing topics. Aren’t you a researcher?
- Well you said your job was RESEARCHER.
- Can you tell me about a film you haven’t seen?
- If I haven’t seen it, how would | tell you about it?
- you have not seen = Are you asking about my have not
seen?
- What do you think of Trump?
- He will make a nice addition to the zoo

- | read that over 50% were either concerned or scared
about Donald Trump being President. if that’s the case,

why lglid they vote for him?

se
@ t+1 o t+2
[

Having conversations with a computer

® Eliza was the first 'chatbot' to convince some

humans of its intelligence

e Basic 'Rogerian' therapist (What do YOU think about
that?)

e Some basic linguistic awareness — recognize user
expressions, conjugate and reflect them back

e Let's talk to Eliza and figure out what she knows and
doesn't know about speaking English

Having conversations with a computer

@ You can try this at home too:

e Download eliza_simplified.py from Canvas

e |In the terminal console run:
> python eliza_simplified.py

Eliza: sample conversation

Therapist

Talk to the program by typing in plain English, using normal
upper-and lower-case letters and punctuation. Enter "quit" when
done.

Hello. How are you feeling today?

>I'm a little tired.

Why do you think you're a little tired?

>I probably should have gone to bed earlier.

Why do you say that you probably should have gone to bed
earlier?

>I think I don't sleep enough during the week.

Do you doubt you don't sleep enough during the week?
>No, definitely.

self
@ t+1 o t+2 @

[

g

® Eliza is looking for certain patterns:

ow does Eliza work?

pats, the main response table. Each element of the list is a
two-element list; the first is a regexp, and the second is a
list of possible responses, with group-macros labelled as %%

pats = [
[r'l need (.*),
[r"Why do you need %%?",
r'"'Would it really help you to get %%?",
r'"Are you sure you need %%?"]],

self

A
CO()25() Reimpl ion of Weizenbaum's code by Joe Strout, Jeff Epler, Jez Higgins in Pyth
plementation o elzenbaum’s code by Joe Strout, Je pler, Jez Higgins In Python

How does Eliza work?

® Use certain substitutions:

reflections, a translation table used to convert things you say
into things the computer says back, e.g. "l am" --> "you are”

reflections = {
llam

: "are",
: "were",

"i" :"you",

"i'd" : "you would",

"i've" :"you have",

"i'N" : "you will",

Reimplementation of Weizenbaum's code by Joe Strout, Jeff Epler, Jez Higgins in Python

How does Eliza work?

print("Therapist\n--------- ")

print("Talk to the program by typing in plain English, using normal upper-")
print('and lower-case letters and punctuation. Enter "quit" when done.’)
print('='*72)

print("Hello. How are you feeling today?")

S =

self

A
CO()25() Reimpl ion of Weizenbaum's code by Joe Strout, Jeff Epler, Jez Higgins in Pyth
plementation o elzenbaum’s code by Joe Strout, Je pler, Jez Higgins In Python

How does Eliza work?

mappings = {}

for pattern in pats:
find = pattern[0]
replacements = pattern[1]
mappings[find] = replacements

while s != "quit":
s = input(">"
if len(s) < 1:
s = "quit"
print(s)
s =re.sub(r"[\.1]S", "", s)
response = respond(s, mappings, reflections)
print(response)

@ - o =2 @ Reimplementation of Weizenbaum's code by Joe Strout, Jeff Epler, Jez Higgins in Python

How can we improve on Eliza?

® Try to make Eliza produce a blatant error:

e What kind of error is it?
Morphology
Syntax
Semantics
Pragmatics
Memory?
e How can we solve it?
More patterns
More reflections
Completely new mechanisms

self
@ t+1 o t+2 @
|-

Homework

® Please do the next assignment to practice
RegEx in Canvas (pig_latin.py)
® Due on Monday

»>Instructions are in the script file+Canvas assighment

