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Introduction to 
Natural Language Processing

Topic Modelling II



Topic Modelling

From form to meaning!
Today:

• More on documents as data points

• TF-IDF

• Latent Dirichlet Allocation (LDA)



Basic MWE merging –multiword.py

from nltk.tokenize import MWETokenizer
from nltk import FreqDist

mwe_list = [('palm', 'fronds'), ('coast', 'guard')]
mwe = MWETokenizer(mwe_list, separator='_')

tokens = word_tokenize("The coast guard saw palm fronds.")

mwe_tokenized = mwe.tokenize(tokens)

for term, freq in FreqDist(mwe_tokenized).most_common(10):
print(term + "\t" + str(freq))



Pretrained models

General NLP pipelines: Spacy, CoreNLP, gensim…
Or try Nathan Schneider’s MWE system: 

• https://github.com/nschneid/pysupersensetagger

Trained on STREUSLE corpus:
• https://github.com/nert-nlp/streusle

You can also try writing your own 
(hint: this can be formulated as a BIO sequence 
labeling task)

https://github.com/nschneid/pysupersensetagger
https://github.com/nert-nlp/streusle


Collapsed frequencies: ‘palm fronds’

Collapsed frequencies:
• island 3
• coast_guard 2
• navy 1
• u.s._navy 1
• palm_frond 1
• castaway 1
• Honolulu 1
• Fanadik 1
• strand 1

Should we lower case?

Are MWEs sometimes 
harmful?



How to measure distance?

We can measure distance in n dimensions
Problems:

• Document length

• Scaling

• Term specificity

• Collinearity
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Document length

Distance might seem like a good idea but…
• Longer documents have more words
 Short document may not mention U.S. Coast Guard often

 But the fact that it does so in just 100 words seems 
significant

• Still, the angle
remains the same

➢Normalize length

➢Cosine similarity
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Cosine similarity

Measure the angle between vectors:

cos 𝜃 =
𝐴 ∙ 𝐵

𝐴 𝐵

• Dot product of two vectors divided by the product of 
their magnitudes
 Dot product: multiply vectors cell-wise and sum

 Magnitude: 𝑋 = 𝑥1
2 + 𝑥2

2. . +𝑥𝑛
2



Scaling

With cosine similarity, the proportion of word 
frequencies gives the direction
• If word 1 appears once and word 2 appear twice:
 proportion 1:2

• Now consider words appearing 10 vs. 20 times:
 proportion 1:2

➢But is a word appearing twice really twice as 
important as one appearing once?

➢ Is it the same for 10 vs. 20?



Scaling

A common solution is to take log frequencies
• E.g. log base 10

• Difference between
1 and 10 same as
difference between
10 and 100,
100 and 1000,
…
from math import log10

print(log10(5))
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Term specificity

A more fundamental problem with VSMs is 
that we have different ideas about what’s 
important
• Very frequent (non-stop) word is important?
• Suppose our document contains:
 insurance 10

 try 10

 story 10

• What is it about? 
• How can we tell which is more important?



Collection frequency

Some terms might generally be very frequent
• Appearance less surprising – assign less importance

• Use Collection Frequencies (sum over all documents, 
adapted NYT example from Manning & Schütze 1999)
 insurance 10440

 try 10422

 story 23591 (less surprising)

• How are insurance and try still different?



Document frequency

Even with equal collection frequency, terms 
appear in different amounts of documents

term collection document

 insurance 10 10440 3997

 try 10 10422 8760

 story 10 23591 10897

Can we combine these 
somehow?



Just one number

To get just one number representing a term’s 
relevance in a document:
• Use log term frequency (TF): log(TF)

• Weight it by proportion of documents with this term 
(DF) in an N document collection

But we want inverse weighting – high 
document count is bad, so:
• Inverse document frequency (IDF): log(N/DF)



TF-IDF

Most common weight function in Information 
Retrieval:
• Weight for term i in document j (or 0 if unattested):

weight 𝑖, 𝑗 = 1 + log 𝑇𝐹𝑖,𝑗 ∙ log
𝑁

𝐷𝐹𝑖
• The IDF weighting for a unique term is maximal: log(N)
• For a term appearing in all documents: log(1) = 0

TF-IDF weights can be applied to frequencies 
in a BOW model



Classifying documents

TF-IDF is great for finding distinctive terms
But it doesn’t tell us the best way to segment a 

collection into topics
• We want to identify the most different kinds of 

documents

• Words that characterize these ‘kinds’

• Degree of belonging to each of n topics, for each 
document (multiple topics possible)



An approach to automatic “topics”

Latent Dirichlet Allocation (LDA) assumes:
• Words can have their own prior probabilities in each 

possible topic

• Assume that any set of documents we see is an 
example of the topic-based probabilities to realize 
each word

• Each document is a mixture of the topics that 
generated it



LDA – a caricature

Suppose we have 10 topics with different 
probabilities for the same words:
• Mary cooked up a new schematic

Probably these words were generated 
according to these topics:
• Mary cooked up a new schematic

P(Mary|religion) > P(Mary|cooking) > …

Legend:
Religion
Cooking
Engineering
…



The 'generative story'

According to LDA, documents are born like this
• For every document, some random mix of topics is 

selected: 20% politics, 31% religion …

• Once those are known, each position in the document 
is generated by some topic: randomly, word 1 gets to 
come from the 'religion' topic

• Now a specific word is picked at random, based on its 
probability in that topic – very likely to be 'church', 
unlikely to be 'pizza' (but possible) 



LDA – more formally

M 
documents

N words in 
document

Initial prior for each 
topic being in a doc

Initial prior for a word 
being in a topic

Topic distr. for each 
document

Topic generating each 
word in document

Words that 
get chosen



Inferring latent variables

Now the problem: 
• given the words, some idea of how many topics we 

might have and what prior distributions are like 
(incl. likelihood of each word)…

• Infer the latent variables that generated each 
document

Specifically – we want θi for each document i
• Because if we know what words come from which 

topic with what likelihood…
• We can get the topic mixture that generated that 

document with the highest likelihood



Let's do it!

There are several methods to infer θi
• Often: Gibbs sampling (similar to MCMC)
• Gamble on the parameters, see if you get something like 

our collection, if not change parameters
• Initially assume each word comes from a random topic –

get θ, α and β
• Run through data again – is this result likely? -> change

We can't get into these methods in depth in this 
course

But we can use some libraries to do this for us

➢ Further reading: Blei et al. (2003), Grus (2015)



Library lda

First we install the lda library from the 
command line:
> pip install lda

Code in lda_example.py



Imports

# Example adapted from Chris Strelioff
from numpy import argsort
import lda.datasets



Example data
# Get some actual document data
# This is a two dimensional table of 
# documents in each row, word frequencies in each column
reuters_data = lda.datasets.load_reuters()

# Get a list of document titles to help interpret results –
# corresponds to each row in the table
reuters_titles = lda.datasets.load_reuters_titles()

# Get the vocabulary in the documents - corresponds to each 
# column in the table
reuters_vocab = lda.datasets.load_reuters_vocab()



Testing the data
print("We are classifying " + str(len(reuters_titles)) + " documents")
print("with " + str(len(reuters_vocab)) + " distinct words.")

-- We are classifying 395 documents 
-- with 4258 distinct words.

print("For example the title of document 5 is: " + reuters_titles[5])

-- For example the title of document 5 is: 
-- 5 INDIA: Mother Teresa's condition unchanged, thousands pray. CALCUTTA

print("Word 4 is: " + reuters_vocab[4])
print("Its frequency in document 5 is: " + str(reuters_data[5][4]))
-- Word 4 is: mother Its frequency in document 5 is: 24



Fitting the model
lda_model = lda.LDA(n_topics=20, n_iter=500)
lda_model.fit(reuters_data)

topic_word_mapping = lda_model.topic_word_

# Let's check the probability of 'mother' (word 4) in topic 3
# Notice that numpy n-dimensional arrays use 
# commas between dimensions (like R)
print("The probability of word 4 in topic 3 is:")
print(topic_word_mapping[3,4])

-- The probability of word 4 in topic 3 is:
-- 2.70009018301e-06



Getting top words for each topic
# Checking the top words for each topic:
print("\nThe top 5 words in each topic:\n" + "="*50)

for topic in topic_word_mapping:
# Get list of words for this topic from the mapping, 
# sorted by descending probability
words_in_topic = []
sorted_indices = list(argsort(topic))[::-1]
for i in range(5):  # Get top 5

index = sorted_indices[i]
words_in_topic.append(reuters_vocab[index])

print(", ".join(words_in_topic))



Output

The top 5 words in each topic:
==================================================
world, million, against, group, court
harriman, clinton, u.s, ambassador, paris
pope, vatican, surgery, hospital, rome
died, king, service, funeral, michael
russian, russia, soviet, moscow, communist
…



Getting the best topic per document

# Check the top topic for each document
doc_topic_mapping = lda_model.doc_topic_

# Let's see if the first 10 cluster nicely
for n in range(10):

# argmax returns the column with the maxmimum value for this row
best_topic = doc_topic_mapping[n].argmax()
print("doc" + str(n) + ", titled: " + reuters_titles[n])
print("Best topic: " + best_topic)



Output
doc0, titled: 0 UK: Prince Charles spearheads British royal revolution. LONDON 1996-08-20
Best topic: 10

doc1, titled: 1 GERMANY: Historic Dresden church rising from WW2 ashes. DRESDEN, Germany 
1996-08-21
Best topic: 4

doc2, titled: 2 INDIA: Mother Teresa's condition said still unstable. CALCUTTA 1996-08-23
Best topic: 15

doc3, titled: 3 UK: Palace warns British weekly over Charles pictures. LONDON 1996-08-25
Best topic: 10

doc4, titled: 4 INDIA: Mother Teresa, slightly stronger, blesses nuns. CALCUTTA 1996-08-25
Best topic: 15

doc5, titled: 5 INDIA: Mother Teresa's condition unchanged, thousands pray. CALCUTTA 1996-08-
Best topic: 15



Plotting word distributions

import matplotlib.pyplot as pplt

# Make two rows, one column of plots
figure_container, my_plot_axes = pplt.subplots(2, 1)  

# Fill the subplots with each of the following two topics
my_plot_axes[0].stem(topic_word_mapping[4,:])
my_plot_axes[1].stem(topic_word_mapping[15,:])

pplt.show()



Reminder: all words are in all topics!



What else can we read?

 If you want more practice, work through the 
NLTK book, chapter 8, up to section 5
• Review of constituent parsing

• Some additional ideas about sentence structure

What to read next?
• After the final: I recommend Chapter 6 – supervised 

text classification with some more advanced Python


