
LING-362

Introduction to
Natural Language Processing

Tokenization and Regular Expressions I

Quick review

 if …:
• print(x)

elif…:
• print(y)

elif …:
• print(z)

else:
• Do something else

name.py

my_name = "Linda"

if my_name[-1] == "a":

gender_guess = "F"

print("ends in -a, probably female")

else:

gender_guess = "M"

print("does not end in -a, guess male")

Scope of if

Scope of else

argparse – common variants
Unnamed, mandatory positional argument (or 'parameter')

parser.add_argument("filename", help="file to process")

Optional arguments (='parameters')

parser.add_argument('-v', '--verbose', action="store_true")

parser.add_argument('-l', '--lang', action="store", default="eng")

options = parser.parse_args()

filename = options.filename

if options.verbose:

print("Processing " + filename)
print("In language: " + options.lang)

argparser – help
> python palindrome.py -h

usage: palindrome.py [-h] [-b] input

positional arguments:

input Word or phrase to test for being a palindrome

optional arguments:

-h, --help Show this help message and exit

-b, --boolean Use for boolean output, otherwise answers in plain English

CLI arguments in PyCharm

More questions from last time?

Today

Working with words:
• From text to tokens

• Lists in Python

• DIY tokenization vs. NLTK

• Time allowing: start learning about finite-state pattern
matching with regular expressions

Working with words

The NLTK Text Class stores some sort of words:
• .concordance() method displays whole words

• .similar() method checks context in words

How does NLTK know where words start and
end in Moby Dick?

How many words are there here?

Random Tweet:
• This month you can catch a rare sight in pre-dawn sky.

Here are 5 things to know this week:
http://nasa.tumblr.com/post/138041535009/solar-
system-5-things-to-know-this-week …

What does your answer do for functions like
text1.similar("dawn")?

 Implications for other applications?

Tokenization

One of the first steps in dealing with a text is
dividing it into minimal units
• These are the basic units for our analyses

• All text we want to deal with is assigned to some unit

Tempting to think of as 'words', but notice:
>>> text1.concordance("whale",25)

Displaying 25 of 1226 matches:

at name a whale - fish is

SWEDISH . WHALE , ICELAND

piggledy whale statement

Tokenization

NLTK treats punctuation marks the same as
independent words

Reason – once we separate out the words,
something is left over:
• "Thank you, Ambassador (Kantor),

→ " Thank you , Ambassador (Kantor) ,

We call all of these units tokens

A non-trivial form of analysis

Tokenization is a non-trivial problem
• Easier in languages with spaces, like English

• Attempt to split by spaces, then split off
leading/trailing punctuation

Still needs disambiguation:
• Oranges etc. would be …

• whether rivers are nearby, etc.

And dealing with errors:
• … at the same time.That we do …

A non-trivial form of analysis

Morpho-phonology also poses challenges:
• it wasn’t as bad as the pizza

 If not is a word, should n't be one too?
• De facto answer: yes

• Note that this has some funny consequences:

I wo n't do it

→ in NLP, English has a modal verb wo☺

Tokenization in practice

As a very simple baseline, we can use Python's
split() method to tokenize

Split is a method available to all strings:
>>> example = "This is an example"
>>> example.split()

['This', 'is', 'an', 'example']

➢What are those brackets?

Lists

Python uses square brackets to surround lists
Variables can contain list of values:

>>> shopping_list = ["bread", "parsley", "beans"]
>>> number_list = [0, 1, 1, 2, 3, 5]
>>> mixed_list = ["why", "not", 10]

You can also get the nth member of a list
(zero indexed!)

>>> shopping_list[1]

'parsley'

Lists – positions with [n:m]

Actually, our string character extraction used
lists as well – strings contain lists of characters:
>>> "parsley"[0]
'p'
>>> "parsley"[0:2]
'pa'
>>> shopping_list[1]
'parsley'
>>> shopping_list[1][0] # Char position in list position…
'p'

Lists – append() and remove()

>>> shopping_list.append("broccoli")
>>> shopping_list
['bread', 'parsley', 'beans', 'broccoli']
>>> shopping_list.remove("bread")
>>> shopping_list
['parsley', 'beans', 'broccoli']
>>> shopping_list.remove("celery")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: list.remove(x): x not in list

Back to split()

 .split() gives us a list of strings from a single string
By default the separator is assumed to be space,

but it can be specified:
>>> sentence = "This is an example"
>>> sentence.split()

['This', 'is', 'an', 'example']

>>> server = "corpling.uis.georgetown.edu"
>>> server.split(".")

['corpling', 'uis', 'georgetown', 'edu']

Not enough for tokenization

Let’s try using .split() on this string variable:

sent = "the lawyer's group, chaired by Lefcourt, will
deal with this."

Not enough for tokenization

>>> sent = "the lawyer's group, chaired by Lefcourt, will
deal with this."
>>> sent.split()
['the', "lawyer's", 'group,', 'chaired', 'by', 'Lefcourt,',
'will', 'deal', 'with', 'this.']

• We need some way to define more complex patterns
to split off

• These will be language (genre?) dependent

Existing tools

We will learn how automatic tokenization can
be coded from scratch in just a bit!

But first let's look at an off-the-shelf tokenizer
• NLTK comes with a built-in tokenizer for English

• Doesn't always get things right (when?)

• But a pretty good approximation

nltk.word_tokenize()

You can use the tokenization function as a
method of the nltk package:
import nltk
nltk.word_tokenize("Some words.")

Or import it directly – both work the same:
from nltk import word_tokenize
word_tokenize("Some words.")

Let's try this out!

Go online and see how good NLTK is!
• Pick some potentially messy content like:
 News
 Twitter/FaceBook/Reddit…

 Weather report (numbers, degrees and all)
 …

• Paste the text into a new script file in PyCharm:
 Surround it with triple quotes and assign to a variable:
 my_text = """some really long text… """

 import nltk and use word_tokenize() on that variable

 Print the result

Warning 1: Why triple quotes?

 You can use double or single quotes to protect quotes
in Strings:

• sentence1 = 'I said "hello" next'

• sentence2 = "This is Ben's cousin"

 But what if you have both? → Triple quotes:
• Sentence3 = """This one can contain "normal" use of quotes

even if you don't avoid single quotes"""

Examples

Weather:
• Elev 90 ft 38.91 °N , 77.01 °W | Updated 4 min ago

Overcast Overcast 49.4 °F Feels Like 49 °F N1.0 Wind
from South Gusts 6.0 mph Tomorrow is forecast to be
MUCH COOLER than today .

Tweet:
• This month you can catch a rare sight in pre-dawn sky .

Here are 5 things to know this week : http :
//nasa.tumblr.com/post/138041535009/solar-system-
5-things-to-know-this-week …

Outputting lists more readably

 If you just print a list, you get a rather
unreadable output

And possibly no support for Unicode in your
terminal:
• ['Elev', '90', 'ft', '38.91', '\xc2\xb0N', ',', '77.01',

'\xc2\xb0W', '|', 'Updated', '4', 'min', 'ago', 'Overcast',
…]

Basic for loop

A nicer way is to loop through the list and output
each token in a separate line:

tweet = """This month you can catch a rare sight in pre-
dawn sky"""

tokenized = word_tokenize(tweet)
token_count = 0
for token in tokenized:

print(token)
token_count = token_count + 1

print("FINISHED PRINTING " + str(token_count) + " TOKENS")

Scope of for

(Code also in Canvas > Files > Code > tokenization

How can we catch the errors?

What would you need to know to do
tokenization right?
• Lists (e.g. abbreviations) – bonus challenge in Canvas!

• Heuristics (e.g. capitalization)

• Patterns (contractions, URLs, …)

➢We can check heuristics like capitalization (if
word[0]…) – but how do we use "patterns"?

Patterns using regular expressions

A general way to define simple textual
patterns (for tokenization or other purposes):
• Suppose you want to find all prices in a collection of

computer hardware descriptions
• Maybe you want to split sum and currency…
• But prices come in many shapes:
 $999.99

 €450

 300 Dollars

 …

• Regular expressions (RegEx) can capture these!

Regular expressions

A regular expression can contain:
• Characters to search for

• Operators – special symbols

• Reserved symbols (e.g. 'any digit' or 'beginning of line')

By convention RegEx is often given between
slashes (Perl syntax – not actual Python):
• "hello" A string of characters, exactly 'hello'

• /hello/ A RegEx matching only the pattern 'hello'

Kleene star * and plus +

Basic operators:
Kleene star: *

• The previous character any number of times
• /pizza-*time/ matches:
 pizzatime, pizza-time, pizza--time, pizza---time …

Kleene plus: +
• The previous character, at least once
• /ba+/ matches the sheep language:
 ba, baa, baaa, baaaa …

• Does not match just a single 'b'

The dot wildcard: .

The . stands for any character
• /d.g/ matches: dig, dug, dog …

Can combine with other operators:
• /.*tion/ matches words in -tion

• /bread.*butter/ matches: bread & butter, bread n'
butter, breadbutter … (note: RegEX doesn't care about
words here!)

Optional stuff: ? and |

? marks a previous character as optional
• /colou?r/ matches color and colour

| marks alternatives:
• /cat|dog/ matches cat and dog

[] marks a range of possible characters:
• /b[iau]t/ matches bit, bat, but (not bot)

Combines with + and * :
• /[0-9]+/ a sequence of digits

Range expressions and negation

Some ranges can be abbreviated:
• [a-z] any lower case character

• [A-Z] any upper case character

• [A-Za-z] any of both the above

• [0-9] any digit

Negative ranges begin with ^:
• [^a-z] anything other than a lower case character

• [^aeiou] not a vowel

Applying operators to part of a string

You can use parentheses to apply an operator
to part of a string:
• /pupp(y|ies)/ finds puppy or puppies

• /puppy|ies/ finds puppy or ies

Applies to other operators too:
• /pup(py)?/ finds pup and puppy

You can nest brackets:
• /pup(p(y|ies))?/ finds pup, puppy, puppies

Regex Golf

A game – match entire string of these:
• afoot, foody, fool

Do not match: forest, afluent, pool, foos
Use as few characters as possible (par: 13)

? * . + [] (|)

Regex Golf

A game – match entire string of these:
• afoot, foody, fool

Do not match: forest, afluent, pool, foos
Use as few characters as possible (par: 13)

? * . + [] (|)

Some solutions:
• /a?foo[tdl]y?/ 12
• /a?foo(t|l|dy)/ 13
• /a?foo([tl]|dy)/ 14

Anchoring

You may want to find a regex only if it's the
beginning or end of a string:
• ^ - line begin

• $ - line end

Examples:
• /pup/ matches pup, but also pupil

• /^pup$/ matches exactly pup

• /^un.*/ words beginning with un

Escape sequences

Some characters can't be represented easily:
• What if we want to search for an actual '?' or '.'?

Escape operator characters with a backslash \
• /\./ finds periods

• What does this do? /U\.?S\.?(A\.?)?/

Other special characters:
• \n a new line symbol

• \t a tab character

