
LING-362

Introduction to
Natural Language Processing

Topic Modelling II

Topic Modelling

From form to meaning!
Today:

• More on documents as data points

• TF-IDF

• Latent Dirichlet Allocation (LDA)

Basic MWE merging –multiword.py

from nltk.tokenize import MWETokenizer
from nltk import FreqDist

mwe_list = [('palm', 'fronds'), ('coast', 'guard')]
mwe = MWETokenizer(mwe_list, separator='_')

tokens = word_tokenize("The coast guard saw palm fronds.")

mwe_tokenized = mwe.tokenize(tokens)

for term, freq in FreqDist(mwe_tokenized).most_common(10):
print(term + "\t" + str(freq))

Pretrained models

General NLP pipelines: Spacy, CoreNLP, gensim…
Or try Nathan Schneider’s MWE system:

• https://github.com/nschneid/pysupersensetagger

Trained on STREUSLE corpus:
• https://github.com/nert-nlp/streusle

You can also try writing your own
(hint: this can be formulated as a BIO sequence
labeling task)

https://github.com/nschneid/pysupersensetagger
https://github.com/nert-nlp/streusle

Collapsed frequencies: ‘palm fronds’

Collapsed frequencies:
• island 3
• coast_guard 2
• navy 1
• u.s._navy 1
• palm_frond 1
• castaway 1
• Honolulu 1
• Fanadik 1
• strand 1

Should we lower case?

Are MWEs sometimes
harmful?

How to measure distance?

We can measure distance in n dimensions
Problems:

• Document length

• Scaling

• Term specificity

• Collinearity

 0 2 4 6 8 10

 0
 2

 4
 6

 8
1
0

 0

 2

 4

 6

 8

10

island

fl
o
ri
d
a

n
a
v
y

doc3=[1,4,3]

doc2=[7,5,0]

Document length

Distance might seem like a good idea but…
• Longer documents have more words
 Short document may not mention U.S. Coast Guard often

 But the fact that it does so in just 100 words seems
significant

• Still, the angle
remains the same

➢Normalize length

➢Cosine similarity

 0 10 20 30 40 50

 0
1
0

2
0

3
0

4
0

5
0

 0

10

20

30

40

50

island

fl
o
ri
d
a

n
a
v
y

doc3=[1,4,3]
doc2=[7,5,0]

 0 2 4 6 8 10

 0
 2

 4
 6

 8
1
0

 0

 2

 4

 6

 8

10

island

fl
o
ri
d
a

n
a
v
y

doc3=[1,4,3]

doc2=[7,5,0]

10x navy …

Cosine similarity

Measure the angle between vectors:

cos 𝜃 =
𝐴 ∙ 𝐵

𝐴 𝐵

• Dot product of two vectors divided by the product of
their magnitudes
 Dot product: multiply vectors cell-wise and sum

 Magnitude: 𝑋 = 𝑥1
2 + 𝑥2

2. . +𝑥𝑛
2

Scaling

With cosine similarity, the proportion of word
frequencies gives the direction
• If word 1 appears once and word 2 appear twice:
 proportion 1:2

• Now consider words appearing 10 vs. 20 times:
 proportion 1:2

➢But is a word appearing twice really twice as
important as one appearing once?

➢ Is it the same for 10 vs. 20?

Scaling

A common solution is to take log frequencies
• E.g. log base 10

• Difference between
1 and 10 same as
difference between
10 and 100,
100 and 1000,
…
from math import log10

print(log10(5))
0.6 0.8 1.0 1.2 1.4

1
5

1
0

5
0

5
0
0

lo
g

1

10

100

1000

Term specificity

A more fundamental problem with VSMs is
that we have different ideas about what’s
important
• Very frequent (non-stop) word is important?
• Suppose our document contains:
 insurance 10

 try 10

 story 10

• What is it about?
• How can we tell which is more important?

Collection frequency

Some terms might generally be very frequent
• Appearance less surprising – assign less importance

• Use Collection Frequencies (sum over all documents,
adapted NYT example from Manning & Schütze 1999)
 insurance 10440

 try 10422

 story 23591 (less surprising)

• How are insurance and try still different?

Document frequency

Even with equal collection frequency, terms
appear in different amounts of documents

term collection document

 insurance 10 10440 3997

 try 10 10422 8760

 story 10 23591 10897

Can we combine these
somehow?

Just one number

To get just one number representing a term’s
relevance in a document:
• Use log term frequency (TF): log(TF)

• Weight it by proportion of documents with this term
(DF) in an N document collection

But we want inverse weighting – high
document count is bad, so:
• Inverse document frequency (IDF): log(N/DF)

TF-IDF

Most common weight function in Information
Retrieval:
• Weight for term i in document j (or 0 if unattested):

weight 𝑖, 𝑗 = 1 + log 𝑇𝐹𝑖,𝑗 ∙ log
𝑁

𝐷𝐹𝑖
• The IDF weighting for a unique term is maximal: log(N)
• For a term appearing in all documents: log(1) = 0

TF-IDF weights can be applied to frequencies
in a BOW model

Classifying documents

TF-IDF is great for finding distinctive terms
But it doesn’t tell us the best way to segment a

collection into topics
• We want to identify the most different kinds of

documents

• Words that characterize these ‘kinds’

• Degree of belonging to each of n topics, for each
document (multiple topics possible)

An approach to automatic “topics”

Latent Dirichlet Allocation (LDA) assumes:
• Words can have their own prior probabilities in each

possible topic

• Assume that any set of documents we see is an
example of the topic-based probabilities to realize
each word

• Each document is a mixture of the topics that
generated it

LDA – a caricature

Suppose we have 10 topics with different
probabilities for the same words:
• Mary cooked up a new schematic

Probably these words were generated
according to these topics:
• Mary cooked up a new schematic

P(Mary|religion) > P(Mary|cooking) > …

Legend:
Religion
Cooking
Engineering
…

The 'generative story'

According to LDA, documents are born like this
• For every document, some random mix of topics is

selected: 20% politics, 31% religion …

• Once those are known, each position in the document
is generated by some topic: randomly, word 1 gets to
come from the 'religion' topic

• Now a specific word is picked at random, based on its
probability in that topic – very likely to be 'church',
unlikely to be 'pizza' (but possible)

LDA – more formally

M
documents

N words in
document

Initial prior for each
topic being in a doc

Initial prior for a word
being in a topic

Topic distr. for each
document

Topic generating each
word in document

Words that
get chosen

Inferring latent variables

Now the problem:
• given the words, some idea of how many topics we

might have and what prior distributions are like
(incl. likelihood of each word)…

• Infer the latent variables that generated each
document

Specifically – we want θi for each document i
• Because if we know what words come from which

topic with what likelihood…
• We can get the topic mixture that generated that

document with the highest likelihood

Let's do it!

There are several methods to infer θi
• Often: Gibbs sampling (similar to MCMC)
• Gamble on the parameters, see if you get something like

our collection, if not change parameters
• Initially assume each word comes from a random topic –

get θ, α and β
• Run through data again – is this result likely? -> change

We can't get into these methods in depth in this
course

But we can use some libraries to do this for us

➢ Further reading: Blei et al. (2003), Grus (2015)

Library lda

First we install the lda library from the
command line:
> pip install lda

Code in lda_example.py

Imports

Example adapted from Chris Strelioff
from numpy import argsort
import lda.datasets

Example data
Get some actual document data
This is a two dimensional table of
documents in each row, word frequencies in each column
reuters_data = lda.datasets.load_reuters()

Get a list of document titles to help interpret results –
corresponds to each row in the table
reuters_titles = lda.datasets.load_reuters_titles()

Get the vocabulary in the documents - corresponds to each
column in the table
reuters_vocab = lda.datasets.load_reuters_vocab()

Testing the data
print("We are classifying " + str(len(reuters_titles)) + " documents")
print("with " + str(len(reuters_vocab)) + " distinct words.")

-- We are classifying 395 documents
-- with 4258 distinct words.

print("For example the title of document 5 is: " + reuters_titles[5])

-- For example the title of document 5 is:
-- 5 INDIA: Mother Teresa's condition unchanged, thousands pray. CALCUTTA

print("Word 4 is: " + reuters_vocab[4])
print("Its frequency in document 5 is: " + str(reuters_data[5][4]))
-- Word 4 is: mother Its frequency in document 5 is: 24

Fitting the model
lda_model = lda.LDA(n_topics=20, n_iter=500)
lda_model.fit(reuters_data)

topic_word_mapping = lda_model.topic_word_

Let's check the probability of 'mother' (word 4) in topic 3
Notice that numpy n-dimensional arrays use
commas between dimensions (like R)
print("The probability of word 4 in topic 3 is:")
print(topic_word_mapping[3,4])

-- The probability of word 4 in topic 3 is:
-- 2.70009018301e-06

Getting top words for each topic
Checking the top words for each topic:
print("\nThe top 5 words in each topic:\n" + "="*50)

for topic in topic_word_mapping:
Get list of words for this topic from the mapping,
sorted by descending probability
words_in_topic = []
sorted_indices = list(argsort(topic))[::-1]
for i in range(5): # Get top 5

index = sorted_indices[i]
words_in_topic.append(reuters_vocab[index])

print(", ".join(words_in_topic))

Output

The top 5 words in each topic:
==
world, million, against, group, court
harriman, clinton, u.s, ambassador, paris
pope, vatican, surgery, hospital, rome
died, king, service, funeral, michael
russian, russia, soviet, moscow, communist
…

Getting the best topic per document

Check the top topic for each document
doc_topic_mapping = lda_model.doc_topic_

Let's see if the first 10 cluster nicely
for n in range(10):

argmax returns the column with the maxmimum value for this row
best_topic = doc_topic_mapping[n].argmax()
print("doc" + str(n) + ", titled: " + reuters_titles[n])
print("Best topic: " + best_topic)

Output
doc0, titled: 0 UK: Prince Charles spearheads British royal revolution. LONDON 1996-08-20
Best topic: 10

doc1, titled: 1 GERMANY: Historic Dresden church rising from WW2 ashes. DRESDEN, Germany
1996-08-21
Best topic: 4

doc2, titled: 2 INDIA: Mother Teresa's condition said still unstable. CALCUTTA 1996-08-23
Best topic: 15

doc3, titled: 3 UK: Palace warns British weekly over Charles pictures. LONDON 1996-08-25
Best topic: 10

doc4, titled: 4 INDIA: Mother Teresa, slightly stronger, blesses nuns. CALCUTTA 1996-08-25
Best topic: 15

doc5, titled: 5 INDIA: Mother Teresa's condition unchanged, thousands pray. CALCUTTA 1996-08-
Best topic: 15

Plotting word distributions

import matplotlib.pyplot as pplt

Make two rows, one column of plots
figure_container, my_plot_axes = pplt.subplots(2, 1)

Fill the subplots with each of the following two topics
my_plot_axes[0].stem(topic_word_mapping[4,:])
my_plot_axes[1].stem(topic_word_mapping[15,:])

pplt.show()

Reminder: all words are in all topics!

What else can we read?

 If you want more practice, work through the
NLTK book, chapter 8, up to section 5
• Review of constituent parsing

• Some additional ideas about sentence structure

What to read next?
• After the final: I recommend Chapter 6 – supervised

text classification with some more advanced Python

