
LING-362

Introduction to
Natural Language Processing

Finite State Methods (ctd.)

Information Session

Data Science and Analytics MS and BS-MS
Programs / Ami Gates

Time: Nov 15, 2021 12:30 PM
Zoom Meeting:

• https://georgetown.zoom.us/j/91335226763

https://georgetown.zoom.us/j/91335226763

Finite State Automata

Each FSA can recognize a certain language, using:
• A finite number of states, including start and end
• Transitions depending on input

More formally:
• FSA ≡ {Q, q0, F, Σ, δ(q,i)}

Where:
• Q is a set of possible states qi… qn

• q0 is the starting state within Q
• F is a subset of end states within Q
• Σ is the alphabet
• δ(q,i) is a set of allowable transitions from state q given

input i

FSA for the sheep language

Sheep dialect /ba+/:

Starting
state, ∈Q

Ending
state, ∈F⊆Q

Alphabet
symbol, a∈Σ

Finite State Morphology

Among most successful applications of FSA
Popular in agglutinative languages (Turkish,

Japanese), and highly inflected more or less
concatenative ones (e.g. Slavic, Finnish)

Basic tasks:
• Morphological parsing

• Generation

From NL input to states

 Famous Turkish example (Jurafsky & Martin 2008,
after Kemal Oflazer):
• Uygarlaştɪramadɪklarɪmɪzdanmɪşsɪnɪzcasɪna

civil-bec-caus-npot-part-pl-p1pl-abl-past-2pl-adv
"such that you can't be made civilized by us"
(civil-ize-ate-unable-ing-s-our-from-did-you-ly)

Morphemes follow a particular order
Many are optional
Possible word formations can be described via

states…

Morphological parsing

The task:
• Given some word in language X as input:
• Output lexicon forms of constituents
• Give morphological analysis to the units

Ambiguity is possible:
• friendly (ADJ) = friend:N + ly:ADJ
• friendly (ADV) = friend:N + ly:ADJ + 0:ADV

(for ?friendlyly, Bauer 1992)

 In ambiguous cases: give all possible analyses
One way of dealing with Out Of Vocabulary items

English adjectives

What would we need to model forms like
these?
• happy, happier, unhappy, happily, unhappily

• lucky, luckiest, unlucky, luckily, unluckily

• big, bigger, biggest

• …

What is the alphabet like?
What transitions are possible?

First approximation

A first approach would be to model states for
each morpheme

Allow transitions based on order (Antworth 1990)

➢ Problems?

Problems

Some strange forms will be possible:
• unbigest

• bigly

• …

Orthography would need to be handled:
• happyer

• happyly

Solutions

Automata must become more complex to
model the phenomenon

Just the beginning:

Writing automata

Many frameworks exist for FSM
 Influential early framework: Xerox FSM (XFSM)

• Beesley & Karttunen (2003)

Many free (re)implementations:
• HFSM, Foma, OpenFST/PyFST

• Compiled in C++ for performance

• Bindings for Python available (though may be tricky to
compile, OS dependent)

We will use a simple version in Python

Concatenating and regex

The easiest way to represent morphology with
automata: composition

Simply concatenate automata to recognize
complex expression:
• Input1 -> Automaton1 (say, un- prefixation)

• Input2 -> Automaton2 (say, comparative formation)

• Input1Input2 -> Automaton1+Automaton2

Can be implemented using regex
concatenation (a way of describing some FSAs)

Regex as symbol names

import re

first = r"(Bobby|Amir)"
last = r"(Zeldes)"

composed = "^" + first + last + "$"

print(re.search(composed, "BobbyZeldes"))
print(re.search(composed, "BobbySchmidt"))

Let's try the English adjectives

Suppose adjectives look like this:
• Can start with un-

• Have a stem like big or clear

• Can end in -er, -est

Can we compose a three part regular
expression to identify these?

Solution

import re

un = r"(un)?"

stem = r"(big|clear)"

suffix = r"(er|est)?"

composed = "^" + un + stem + suffix + "$“

Now we can recognize if a word is such an adjective!

Visualization

 It can be useful to plot out automata
We will see multiple plot types later
For simple regex strings you can use:

• https://regexper.com/

• Our phone expression: r"((\(?[0-9]+\)? ?)+)"

start
end

transition

state
group

https://regexper.com/

What about generation?

We can use library exrex to randomly walk
through regex states

> python -m pip install exrex

import exrex
Generate some forms
print("Generating all forms:\n")
outputs = exrex.generate(composed)

for output in outputs:
print(output)

A word about generators

exrex.generate() returns something that looks
like a list

But:
adjectives = exrex.generate(r"(un)?(big)(er)?")

print(adjectives[0])

{TypeError}'generator' object is not subscriptable

A word about generators

Generators act like lists in for loops
But they only fetch one item at a time
Save memory by not representing whole list
Can be converted to lists:

print(list(adjectives)[0])

big

Looping through our generator
Generating all forms:

 big
 biger
 bigest
 clear
 clearer
 clearest
 unbig
 unbiger
 unbigest
 unclear
 unclearer
 unclearest

FSA – where are final states?

Is concatenation all we need?

Some word formations are more complex:
• Circumfixes: en-/em- -en
 enliven

 embolden

 embiggen

• Reduplication:
 no-no

 night-night

Is concatenation all we need?

These processes are not very productive in
English, but they are in other languages:
• Japanese honorifics: o-VERB-i-suru

• German past tense: ge-VERB-t

• And recall the Greek perfect…

Some languages have productive triplication!

pei float

peipei floating

peipeipei still floating

Pingelapese (Micronesia)
(Rehg 1981:11)

Nesting expressions is useful!

Even for English, it can be necessary or just
convenient to nest expressions

Consider the ‘wordy’ part of URLs/e-mails
• WORD = ([A-Za-z][A-Za-z0-9]*-?)+

What’s better?
• Email = ([A-Za-z][A-Za-z0-9]*-?)+@([A-Za-z][A-Za-z0-

9]*-?)\. ([A-Za-z][A-Za-z0-9]*-?)

• Email = WORD+@WORD.WORD

Can be reused for URLs, file nams…

Nesting with f-strings

 Since Python 3.6, we can embed variables into
strings using f-strings:

username = "Amir"
message = f"Hello {username}!"
print(message)

 f-strings also automatically convert to str():

iteration = 1
print(f"running trial {iteration}")

Application in morphology

As an example application of nesting in
computational morphology, we will look at
numbers
• Infinite set

• Important for some NLP (NLU & NLG) applications

• Fairly easy to define using finite-state methods

• Essentially impossible to capture perfectly using
statistical methods (neural nets)

Download Files > Code > fsm > numerals.py

An example: English numerals

Suppose we want to model the grammar of
numbers from 1 – 99

First we need one – nine:
Adapted from Karttunen (2004)

import re, exrex

one_to_nine = "(one|two|three|four|five|six|seven|eight|nine)"

What do the next numbers consist of?

An example: English numerals

 Adding teen and ten prefixes:
teen_ten = "(thir|fif|six|seven|eigh|nine)"

 We have to add ten, eleven, twelve (unpredictable)
 But how do we combine “-teen” with each of the prefixes

above? teens = (ten|eleven|twelve|???)

 Answer: use f-strings!
teens = f"(ten|eleven|twelve|(({teen_ten}|four)teen))"

An example: English numerals

 Now the ‘tens’ (numbers in X-ty)
 Remember they have the same prefixes as teens:

thir(teen|ty)
 But we should also add “twen”(ty) and “for”(ty)

teen_ten = "(thir|fif|six|seven|eigh|nine)"

ten_stem = ? # covers twenty, thirty, forty, fifty …

An example: English numerals

 Now the ‘tens’ (numbers in X-ty)
 Remember they have the same prefixes as teens:

thir(teen|ty)
 But we should also add “twen”(ty) and “for”(ty)

teen_ten = "(thir|for|fif|six|seven|eigh|nine)"

ten_stem = f"({teen_ten}|twen|for)ty"

An example: English numerals

 Now we combine individual digits with tens to produce
“twenty-three” etc.

tens = f"({ten_stem}(-{one_to_nine})?)“
one_to_ninety_nine = f"^({one_to_nine}|{teens}|{tens})$“

 Generate forms:
max_forms = 10

print(f"Generating {max_forms} random forms:\n")

for i in range(max_forms): # range generates numbers up to its argument

output = exrex.getone(one_to_ninety_nine)

print(output)

Output

Generating 10 random forms:

• four
• two
• eight
• twenty
• forty
• twenty-five
• twelve
• eleven
• forty-one
• twenty-two

NLU vs NLG

 We can also recognize or reject numbers:

Test inputs
print("\nTesting inputs:\n")
inputs = ["ten","twenty-three","eleventy","fifty-ten"]

for word in inputs:
if re.search(one_to_ninety_nine,word) is None:

print("input " + word + " does not pass validation")
else:

print("input " + word + " is valid")

Output

Testing inputs:

• input ten is valid

• input twenty-three is valid

• input eleventy does not pass validation

• input fifty-ten does not pass validation

