
LING-362

Introduction to
Natural Language Processing

N-grams and language Models I

Mini hackathon results

Mini hackathon results

Covered:
• 10 nouns
• 6 verbs
• 5 prepositions
• 5 auxiliaries (plus null)
• All persons (except 2sgF)

And phonotactic rules!
• Article lengthening

Cleaned up solution in Code > Foma

What is this for?

Coptic Scriptorium -
https://copticscriptorium.org/
• Read and analyze

Coptic texts

• Online dictionary

• NLP tools

• Syntactic,
morphological and
semantic search

https://copticscriptorium.org/
http://www.modernphoenix.net/scriptorium/index.html
http://www.neh.gov/

Grammar and usage

Regular languages (and FSAs) have a formal
grammar

Transitions between states
No knowledge about usage

• No memory of previous states

• No experience from previous runs

Memory and experience

At the micro level, remembering previous
context can be helpful:
• Can we disambiguate? What if we could stop over-

generation by considering earlier input?

• Is this analysis correct?
 Number: numb+er = numb+ADJ+COMP

• How about now?
 … the number is …

 … is number than …

 … more number one …

Memory and experience

At a macro level, experience helps us even
without context:
• number=‘digits’ more often than number=‘more

numb’

And with context, for categories:
• Comparative more likely if than appears

Brief review: probability

Many questions in NLP are a matter of
probability:
• number is an adjective:
 Possible (generated by FSM)

 Unlikely (rare in corpus data)

 Does occur somewhere!

 Some contexts truly ambiguous

Declared goal of most statistical approaches to
NLP: be wrong as rarely as possible (but we will
be wrong sometimes)

Frequentist probability

For some scenarios we may have a rational
expectation of exact probabilities:
• Coin toss: p(heads) = 0.5 (or tails: 0.5)

• Dice: p(⚃)= 1/6 (or not: 5/6)

• Note:
 We know all possible outcomes

 Probabilities sum up to 1!

Frequentist probability

For many empirical phenomena we do not
have such numbers
• p(rain tomorrow) = ?

• p(‘number’ is an adjective) = ?

Frequentist probability

We can estimate probabilities based on
previous experience:
• Guess October 6, 2021 will be like last October 6…

(could have been a fluke that year?)

• Maybe take average precipitation and temperature of
last 10 years?

More data typically means better predictions

Conditional probabilities

Won’t the weather today depend on
yesterday?
• Conditional probabilities are written like this:
 p(rain today|rain yesterday)

Conditional probabilities

 If two events A, B, are independent, then:
• p(A|B) = p(A)

For independent events, the chain rule applies:
• p(A&B) = p(A)*p(B)

For example:
• P(⚃ & ⚅) = ?

1/6 * 1/6 = 1/36

Back to linguistic experience

Probabilities without context:
• p(number=digits) > p(number='more numb')

And with context:
• p(comparative|'than' is next) > p(noun|'than' is next)

➢How can we model ‘context’ more generally?

N-gram models

A very simple (and efficient) way of modeling
context is using n-grams
• Decide on a useful context size, often 3 words

• Save analyses not of individual words, but of words
given the previous 2 words – trigram model

Image:
googlesystem.blogspot.com

N-gram models

Why 3?
Any number can be chosen
Key consideration: amount of data available

• Choosing long chains increases accuracy

• Different answer for:
 Find him number than

 Find him number of

• But: potentially few instances of each chain

• Data sparseness problem

N-gram models

Rules of thumb:
For typical 'million word' resources – trigrams

are taken
 'Low resource languages' with 10K samples –

bigrams
Gigaword corpora – 4, 5-grams

(e.g. Google n-grams)

Are n-grams realistic?

Humans use a lot of linguistic information not
covered in n-grams
• Can understand novel combinations:

colorless green ideas

But humans probably do store n-grams:
• beam me …

• come out come out …

• a twist of …

Experiment

• once in a while once in line to

• in over the past all over the world

• as if the click as if they were

• got away with it scribble away and confide

>11

>20

20<

27<

What are they good for?

The idea of using n-grams to model
language data is due to Markov (1913):
• Looked at Russian orthography in

Pushkin’s Eugene Onegin
 Frequency of characters followed normal distribution

(despite very complex poetic meter)

 Language is not random – strong deviation from
independence

 Phonotactics and morphology in a language's written script

What are they good for?

The extension to word models became
obvious and was popularized in the 50s

Today:
• language models in machine translation
 Given N possible translations outputted by a system…
 Rank each by likelihood as given by the model

• predictive keyboards (cellphones)
• augmentative communication (for disabilities)
• Optical Character Recognition (OCR)
• Speech to text

Example - SwiftKey

Images: SwiftKey, PCWorld

Building our own!

Consider the following texts,
by Charles Dickens*:

bigram model trigram model 4-gram model

*sort of

depose to linger yet,
pointing upward
! ' are melting
from me, pointing
upward

signature under such
circumstances, Mr.
Mell, formerly poor
pinched usher to my
Middlesex magistrate

that I stole into the
next street, and
open a chemist's
shop? Whether he
could

[Wikimedia]

DIY natural language generation!

Let's create Dickensian stories
We need:

• Dickensian training data and a way to read it

• Random selection

• A mechanism to choose best output for a story of a
certain length

Download:
• ngrams.py

• dickens.txt

Reminder – reading files
parser = argparse.ArgumentParser()
parser.add_argument("file")

options = parser.parse_args()
training_file = options.file

a = open(training_file).read()

with open(training_file,'r') as f:

training_data = f.read()

…

counts = get_counts(context_length, training_data)

Learning the frequencies

To track frequencies of n-grams, we’ll need a
dictionary tracking counts like this:
• Key: “In”, “the”
 Value: another dictionary:
 Key: “beginning”, value: 2

 Key: “end”, value: 5

 …

• The function get_counts() should build this dictionary

Learning the frequencies

 It looks like we could use a list for the key:
freqs[["in","the"]] = {"end":5, "beginning": 2}

Actually, this is forbidden:
• Dictionary keys must be immutable
• List values could be changed:
 We could change the second list member of [“in”, “the”]

my_key = ["in","the"]
freqs[my_key] = 5

my_key[0] = "by"

 Dictionary would be broken

Tuples: not quite Lists

Python has a cousin data-type to lists: tuples
• Tuples are like lists, but they are immutable

• Once defined they can’t be changed

• Look a lot like lists in round brackets:

This is a list:
a = ["in", "the"]

This is a tuple:
b = ("in", "the")

Tuples: not quite Lists

 In practice, tuples are used:
• When an immutable data type is required

• In contexts where something like a list:
 Has a specified, invariable length

 Each position has a predictable meaning

Example: person’s height, weight and age:
Don’t need to append or change these:

stats = (175, 72, 43)

Another helper function: range()

We’ll need to count words up to the needed
context size (last two words for trigrams)

We can use the range() generator for this:
Give us a list with the first 10 numbers

list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

get_counts()
def get_counts(context_length, training_text):

counts = {}

tokens = word_tokenize(training_text)
for i in range(len(tokens) - context_length):

context = []
next_token = tokens[i + context_length]
for j in range(context_length):

context.append(tokens[i + j])

Add 1 to frequency or create new dictionary item for this tuple
if tuple(context) in counts:

if next_token in counts[tuple(context)]:
counts[tuple(context)][next_token] += 1

else:
counts[tuple(context)] = {next_token: 1}

else:
counts[tuple(context)] = {next_token: 1}

return counts

generate_from_file(context_length,training_file,output_length=10)

first_tokens = choice(counts.keys()) # Choose a random first context
output_list = list(first_tokens)
current_context = first_tokens

for i in range(output_length):
next_context = max(counts[current_context], key=counts[current_context].get)
temp = list(current_context)
temp.pop(0) # Remove first token in previous context
temp.append(next_context) # Add new token for the next context
next_token = temp[-1]
next_context = tuple(temp)

current_context = next_context

output_list.append(next_token)

print(" ".join(output_list))

Spot the genre

these changes into our other midmarket power
forms . Thanks again for your help on this . Carol
St. Clair EB 3889 713-853-3989 (Phone) 713-
646-3393 (Fax) carol.st.clair @ enron.com All ,
Please see the attached Interconnect Agreement
with Questar . Transwestern will own and
operate the interconnect . Questar may be able
to purchase material , but some of

Spot the genre

Furies , and I 'll be as good as my word ; but
speciously for Master Fenton . Well , on went he
for a search , and away went I for foul clothes .
But mark the sequel , Master Brook-I suffered
the pangs of three several deaths : first , an
intolerable fright to be detected with a jealous
rotten bell-wether

Spot the genre

ambush in her system , ready , at the corner of
the street , with his great kite at his back , a very
monument of human misery . My aunt went on
with a quiet enjoyment , in which there was very
little affectation , if any ; drinking the warm ale .
'She 's the most ridiculous of mortals . But

At home

We are not ready to expand the ngram code
yet

But you should find some time to practice
Python!

Try working through Chapter 3 of NLTK:
• http://www.nltk.org/book/ch03.html

• Learning about file I/O

• Getting data from the internet

• More practice with lists, regex, nltk, and more

http://www.nltk.org/book/ch03.html

