LING-362
Introduction to

- Natural Language Processing

Viterbi (ctd.) and Sequence Labeling

self

@ t+1 ° )



HMMs

® An HMM is really a weighted FSA
® The HMM definition comprises:

eV=v,..Vy
e Q=0qy,..0dy (daF)

e A=a;;,3y, ... 8, ... A,
e O=<04 .., 07>



/

HMMs - formal definition

® Transition probabilities (A):
(adapted from Jurafsky & Martin)

0.0004 0.0064  0.0365

\" - 0.0038  0.035 0.047 0.012
TO = 0.83 0 0.00047 0.00079
0.0040 0.016 0.087 0.23

P(VB|TO) = 0.83 (rows give the condition)

self
@ t+1 o 12




/

HMMs - formal definition

® Emission probabilities (B):
(adapted from Jurafsky & Martin 2008)

0.0093 0.12

m 0 0.000054 O 0.000007

P(see|VB) = 0.12 (assuming this is VB, chance to get 'see')

self
@ t+1 o 12

_4




Viterbi code - overview

® Prepare emission + transition dictionaries
(2 levell)
® Prepare a list to contain each word we see

@ Store a dictionary for each word: (n

e Probability of each prev-tag + tag at this word, based
on 3 things:
p_so_far * transition_p * emission_p

® Choose best option, store how we got there
(what was best prev-tag — the backpointer)

self
@ t+1 o t+2 @
=

E 3
tags Ntags |oop)



Building block: defaultdict

® Uses a default value if key is unknown:

e Should be initializable with a data type or function
returning some value

from collections import defaultdict
my_dict = defaultdict(int)
print(my_dict["puppy”])



Building block: defaultdict

@ This is a little cumbersome, so a more Pythonic
way is this to use the anonymous function

lambda:
my_dict = defaultdict(lambda: 0.5)

® Same as:

def half_returner():
return 0.5
my_dict = defaultdict(half _returner)

self
(3

@ - o - @
[



Building block: defaultdict

® And we can even make a defaultdict of

defaultdicts:
e x = defaultdict(lambda: defaultdict(lambda: 0.00000001))

® Now x is a dictionary:

e which defaults unknown entries to dictionaries
which default unknown entries to 0.0000001..

> So what is the value of:
x["puppy"]["the"] ?



/

Viterbi - implementation

tagging/viterbi_simple.py
® Imports and states:

from collections import defaultdict

# Tagger states Q (the tag set)

states = (',', 'CC', 'CD', 'DT', 'EX', 'IN', 'JJ', 'JJR', ')JS', 'LS', 'MD', 'NN’, 'NNP', 'NNPS’,
'NNS', 'PDT', 'PRP', 'PRPS', 'RB', 'RBR’, 'RBS', 'SENT', 'SYM', 'TO', 'UH', 'VB', 'VBD',
'VBG', 'VBP', 'VBZ', 'WDT', 'WP', 'WRB')

Yy




/

Viterbi - starting probabilities

® Training data:
# g0 probabilities:
# can't use prior tags to estimate initial state
start_p = {
','20.006,
'CC': 0.0451,
'CD": 0.0158,
'DT': 0.1365,
'EX': 0.0102,




Viterbi - transitional probabilities

® Training data for transition is a dictionary:
trans_p ={}

® We could set the transition probabilities by
assigning nested dictionaries:

trans_p['DT'] ={'JJ": 0.0208, 'NN': 0.0397 ...}

® But these would be regular dictionaries, no
default value for missing keys

self
@ t+1 o t+2 @
|



Viterbi - transitional probabilities

® A better way:

trans_p =
defaultdict(lambda: defaultdict(lambda: 0.00000001))

trans_p['DT'].update({'JJ': 0.0208, 'NN': 0.0397, ...}
trans_p['IN'].update({’,": 0.0015, 'CD': 0.00186, ...}

self
(3

@ t+1 o t+2 @
'




Viterbi - emission probabilities

emit_p = defaultdict(lambda: defaultdict(lambda:
0.00000001))

emit_p['VB']['want'] = 0.0093
emit_p['VB']['fly'] = 0.0001




The algorithm 1/3

def viterbi(obs, states, start_p, trans_p, emit_p):
path = [{}] # The Viterbi path is a list of dicts mapping tok+tag to probability

# Get initial probabilities for each tag given first token (obs[0])
for tag in states:
path[0][tag] = start_p[tag]*emit_p[tag][obs[0]]




The algorithm 2/3

for tok_num in range(1, len(obs)):
path.append({})
backpointer = {}
for tag in states:
max_prob = 0.0
probs =]
for prev_tag in states:
probs.append(path[tok_num - 1][prev_tag] * trans_p[prev_tag][tag] * emit_p[tag][obs[tok _num]])
if prob > max_prob:
max_prob = prob
best_prev = prev_tag
path[tok_num][tag] = max_prob
backpointer[tag] = best_prev
backpath.append(backpointer)



The algorithm 3/3

optimal_list =]

current_best_tag = max(path[-1], key=path[-1].get)

optimal_list.append(current_best_tag)

backpath.reverse()

for backpointer in backpath:
optimal_list.append(backpointer[current_best tag])
current_best_tag = backpointer[current_best_tag]

optimal_list.reverse()

# The highest probability

max_total prob = max(path[-1].values())

print('Best sequence: ' + ' ".join(optimal_list) + ' with highest probability of ' +
str(float(max_total prob)))

self
@ t+1 o t+2 @

[



Viterbi algorithm

to




Backtrace step

I to

Best
outcome




Group work

® Let’s try to trip up and then fix our tagger:
e Split up into groups
» Pick a sentence — not too long, about 4-7 words

Does the tagger work right?

How could you fix it?
Let each member try a minor variation on this sentence — can the
fixes work without breaking other variations?

e Add emission probabilities for new words

Put them here:
https://corpling.uis.georgetown.edu/etherpad/p/viterbi

You can make them up or use a corpus:
https://corpling.uis.georgetown.edu/cap/

The TAs and | will provide guidance

self
@ t+1 o t+2 @

[



https://corpling.uis.georgetown.edu/etherpad/p/viterbi
https://corpling.uis.georgetown.edu/cqp/

From tagging to sequences

® Part of speech labeling is a classic example of
token-wise tagging:
e Input is a sequence of words (tokens)

e Each word receives exactly one category

e There are usually no other features except words to
decide the correct tag

® But not all labeling tasks are like this!
® We could tag more complex sequences and
with more input features!

self
@ t+1 o t+2 @
=



Sequence labeling - NER

® A typical example is Named Entity Recognition

® Not every token is labeled:
PER  -- ORG --
e Kim visited Intel

® Labels come in spans:

PER PER -- ORG ORG
e Kim Jung visited Intel Corp.

self
(3

@ t+1 o t+2 @
'




How many spans?

@ If we only use labels like PER and ORG, we can
treat this as an HMM/Viterbi problem

e Tags: PER, ORG, .., -- (--" is a tag)

e Input: Kim, Jung, visited ...

e Emission probabilities: P(Kim|PER), P(Intel | ORG)

 Transition probabilities: PER = -- 2 ORG = ORG
® But how can we tell how many ORGs we have?

e Intel Corp. ORG ORG -2 1 org., 2 tokens

e IBM Google lawsuit ORG ORG -- = 2 orgs!!

self —
@ t+1 o t+2 @ —
-




Solution: BIO encoding

® We add more label types to indicate Beginning

and Inside of entities:
e [BM B-ORG

e Corp. [I-ORG

e hired O

e Kim B-PER

e Jung I-PER

®The label O is like our ‘--": Outside any entity

self
(3

@ - o - @
[ .



Solution: BIO encoding

® Labels impose restrictions on transitions:
e P(B-PER = I-PER) > p(I-PER = B-PER)
e P(O = I-PER) = 0 (why?)

® We can still use HMM/Viterbi...

@ But is just one emission probability enough?
e P(PER|Kim) ...
e What about other features?

self
@ t+1 o t+2 @
|



Just one emission?

® Many things influence the probability that a
word is a person/company name:

 Capitalization (very good at finding ‘O’)

e All caps? (ORG)

e Word length

» Knowledge bases (is this in a list of company

names? Place names?)

® Viterbi can’t handle this...

self
(3

@ - o - @
[



Using multiple features

@ Ideally our input should look like this:

e |[BM NNP
e Corp. NNP
e hired VBD
e Kim NNP
e Jung NNP

allcaps
title
lower
title
title

B-ORG
I-ORG
O
B-PER
I-PER




Decoding - CRF

® Efficient decoding over multiple features can be
done using Conditional Random Fields (CRF)
® We do not have time to implement CRF in this
course
® For our purposes, a Linear Chain CRF is
e a sequence label decoder equivalent to a Viterbi decoder

e using multiple input features
e and arbitrary functions for features over the sequence

® Advanced reading: Sutton & McCallum (2006) in
Canvas (optional!)

self
(3

@ - o - @
|-



What are the probabilities?

® For smaller datasets, CRF taggers can learn

joint discrete feature value distributions:
e Python library:
pip install python-crfsuite (Okazaki 2007)

e Good off the shelf CRF tagger:

Marmot (Mdller et al. 2013),
http://cistern.cis.Imu.de/marmot/

e CRF NER tagging example in Canvas:
ner/crf_entities.py

@ t+1 o t+2
[



http://cistern.cis.lmu.de/marmot/

Neural sequence labeling

® Since features can be anything...

® For larger datasets, we can use neural
networks

® Word embeddings as features



Popular libraries

® Flair (Akbik et al. 2019) ﬂ [
® AllenNLP (Gardner et al. 2018) Allen/\| P

® NCRF++ (Yang & Zhang 2018) %
NCRF++




Example - Flair (Akbik et al. 2019)

from flairmodels import SequenceTagger

tagger = SequenceTagger.load( )

sentence = Sentence('George Washington went to Washington .')
tagger.predict(sentence)

print(sentence.to_tagged string())

George <B-PER> Washington <E-PER> went to Washington <S-LOC> .

@ - o - @

[ .



Homework - for Nov 17

@ Turn viterby_simple.py into a trainable tagger!
Split the training filein data/ en_gum-ud-train.conllu into a list of lines.

For each line that contains a tab ("\t"), split it by tab to collect the word
(second column) and PTB part of speech tag (5% column, i.e. [4])
Use a dictionary to track frequencies for:

Each word as each tag

Each transition from the last tag to the next tag

Divide by total number of words to make probabilities and put them into the same
nested dictionary structure used by the viterby tagger.

Bonus: Now read the file en_gum-ud-dev.conllu to get test sentences
(sentences are separated by blank lines)

Collect the words in each sentence from the 2" column (column [1])
Save the correct POS tags from the 5% column as well
Modify viterbi() to return the optimal list of tags

Get tags for each sentence using viterbi and check: for how many tokens did the tagger
find the right solution?

Bonus question: for how many sentences is the tagger 100% correct?



