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Introduction to 
Natural Language Processing

Viterbi (ctd.) and Sequence Labeling



HMMs

An HMM is really a weighted FSA
The HMM definition comprises:

• V = v1 … vV # for us: English words

• Q = q1, … qN (q0,qF) # for us: possible tags

• A = a11,a12 … an1 … ann # transition prob. matrix

• O = <o1, …, oT> # sentence to tag

• B = bi(ot) # prob. of ot given qi

# a.k.a ‘emission’ probs.
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HMMs – formal definition

Transition probabilities (A): 
(adapted from Jurafsky & Martin)

P(VB|TO) = 0.83 (rows give the condition)

Q0 VB TO NN QF

Q0 -- 0.0004 0.0064 0.0365 0

VB -- 0.0038 0.035 0.047 0.012

TO -- 0.83 0 0.00047 0.00079

NN -- 0.0040 0.016 0.087 0.23

QF -- -- -- -- --
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HMMs – formal definition

Emission probabilities (B): 
(adapted from Jurafsky & Martin 2008)

P(see|VB) = 0.12 (assuming this is VB, chance to get 'see')

I want to see

VB 0 0.0093 0 0.12

TO 0 0 0.99 0

NN 0 0.000054 0 0.000007
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Viterbi code - overview

Prepare emission + transition dictionaries 
(2 level!)

Prepare a list to contain each word we see
Store a dictionary for each word: (Ntags*Ntags loop)

• Probability of each prev-tag + tag at this word, based 
on 3 things:
 p_so_far * transition_p * emission_p

Choose best option, store how we got there
(what was best prev-tag – the backpointer)



Building block: defaultdict

Uses a default value if key is unknown:
• Should be initializable with a data type or function 

returning some value

from collections import defaultdict

my_dict = defaultdict(int)
print(my_dict["puppy"])

0
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Building block: defaultdict

This is a little cumbersome, so a more Pythonic
way is this to use the anonymous function 
lambda:

my_dict = defaultdict(lambda: 0.5)

Same as:
# Suppose half_returner is a function, always returns 0.5
def half_returner():

return 0.5
my_dict = defaultdict(half_returner)
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Building block: defaultdict

And we can even make a defaultdict of 
defaultdicts:
• x = defaultdict(lambda: defaultdict(lambda: 0.00000001))

 Now x is a dictionary: 
• which defaults unknown entries to dictionaries
 which default unknown entries to 0.0000001..

➢ So what is the value of:
x["puppy"]["the"] ?
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Viterbi - implementation

tagging/viterbi_simple.py
 Imports and states:

from collections import defaultdict

# Tagger states Q (the tag set)
states = (',', 'CC', 'CD', 'DT', 'EX', 'IN', 'JJ', 'JJR', 'JJS', 'LS', 'MD', 'NN', 'NNP', 'NNPS', 
'NNS', 'PDT', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS', 'SENT', 'SYM', 'TO', 'UH', 'VB', 'VBD', 
'VBG', 'VBP', 'VBZ', 'WDT', 'WP', 'WRB')



Viterbi – starting probabilities

Training data:
# q0 probabilities: 
# can't use prior tags to estimate initial state
start_p = {

',': 0.006,
'CC': 0.0451,
'CD': 0.0158,
'DT': 0.1365,
'EX': 0.0102,
…

}



Viterbi – transitional probabilities

Training data for transition is a dictionary:
trans_p ={}

We could set the transition probabilities by 
assigning nested dictionaries:

trans_p['DT'] = {'JJ': 0.0208, 'NN': 0.0397 …}

But these would be regular dictionaries, no 
default value for missing keys



Viterbi - transitional probabilities

A better way:
trans_p = 
defaultdict(lambda: defaultdict(lambda: 0.00000001))

# Don’t make a new dictionary, 
# just update the defaultdict with new dictionary values

trans_p['DT'].update({'JJ': 0.0208, 'NN': 0.0397, …}

trans_p['IN'].update({',': 0.0015, 'CD': 0.0016, …}



Viterbi – emission probabilities 

emit_p = defaultdict(lambda: defaultdict(lambda: 
0.00000001))

emit_p['VB']['want'] = 0.0093
emit_p['VB']['fly'] = 0.0001

…



The algorithm 1/3
def viterbi(obs, states, start_p, trans_p, emit_p):

path = [{}] # The Viterbi path is a list of dicts mapping tok+tag to probability

# Get initial probabilities for each tag given first token (obs[0])
for tag in states:

path[0][tag] = start_p[tag]*emit_p[tag][obs[0]]



The algorithm 2/3
# Get subsequent probabilities for obs[t] where t > 0 (tokens after the first)
for tok_num in range(1, len(obs)):

path.append({})
backpointer = {}
for tag in states:

max_prob = 0.0
probs = []
for prev_tag in states:

probs.append(path[tok_num - 1][prev_tag] * trans_p[prev_tag][tag] * emit_p[tag][obs[tok_num]])
if prob > max_prob:

max_prob = prob
best_prev = prev_tag

path[tok_num][tag] = max_prob
backpointer[tag] = best_prev
backpath.append(backpointer)



The algorithm 3/3
optimal_list = []

# Go through each token position in path;
# Each token position is now a dictionary 
# of tags to continuation probabilities given previous context
current_best_tag = max(path[-1], key=path[-1].get)
optimal_list.append(current_best_tag)
backpath.reverse()
for backpointer in backpath:

optimal_list.append(backpointer[current_best_tag])
current_best_tag = backpointer[current_best_tag]

optimal_list.reverse()

# The highest probability
max_total_prob = max(path[-1].values())
print('Best sequence: ' + ' '.join(optimal_list) + ' with highest probability of ' + 
str(float(max_total_prob)))



start_p
* 
emit_p

Viterbi algorithm

I want to fly

PRP PRP PRP PRP

VBP VBP VBP VBP

TO TO TO TO

VB VB VB VB

trans_p * 
emit_p * 
prev_p



Backtrace step

I want to fly

PRP PRP PRP PRP

VBP VBP VBP VBP

TO TO TO TO

VB VB VB VB

Best 
outcome



Group work

 Let’s try to trip up and then fix our tagger:
• Split up into groups
• Pick a sentence – not too long, about 4-7 words
➢Does the tagger work right?
➢How could you fix it? 
➢Let each member try a minor variation on this sentence – can the 

fixes work without breaking other variations?

• Add emission probabilities for new words
 Put them here:

https://corpling.uis.georgetown.edu/etherpad/p/viterbi
 You can make them up or use a corpus: 

https://corpling.uis.georgetown.edu/cqp/
 The TAs and I will provide guidance

https://corpling.uis.georgetown.edu/etherpad/p/viterbi
https://corpling.uis.georgetown.edu/cqp/


From tagging to sequences

Part of speech labeling is a classic example of 
token-wise tagging:
• Input is a sequence of words (tokens)
• Each word receives exactly one category
• There are usually no other features except words to 

decide the correct tag

But not all labeling tasks are like this!
We could tag more complex sequences and 

with more input features!



Sequence labeling – NER

A typical example is Named Entity Recognition
Not every token is labeled:

PER -- ORG --

• Kim visited Intel .

Labels come in spans:

PER PER -- ORG ORG

• Kim Jung visited Intel Corp.



How many spans?

 If we only use labels like PER and ORG, we can 
treat this as an HMM/Viterbi problem
• Tags: PER, ORG, .., -- (‘--’ is a tag)

• Input: Kim, Jung, visited …

• Emission probabilities: P(Kim|PER), P(Intel|ORG)

• Transition probabilities: PER → --→ ORG → ORG

But how can we tell how many ORGs we have?
• Intel Corp. ORG ORG → 1 org., 2 tokens

• IBM  Google lawsuit ORG ORG --→ 2 orgs!!



Solution: BIO encoding

We add more label types to indicate Beginning 
and Inside of entities:
• IBM B-ORG

• Corp. I-ORG

• hired O

• Kim B-PER

• Jung I-PER

The label O is like our ‘--’: Outside any entity



Solution: BIO encoding

Labels impose restrictions on transitions:
• P(B-PER → I-PER) > p(I-PER → B-PER)

• P(O → I-PER)  = 0 (why?)

We can still use HMM/Viterbi…
But is just one emission probability enough?

• P(PER|Kim) …

• What about other features?



Just one emission?

Many things influence the probability that a 
word is a person/company name:
• Capitalization (very good at finding ‘O’)

• All caps? (ORG)

• Word length

• Knowledge bases (is this in a list of company
names? Place names?)

• …

Viterbi can’t handle this…



Using multiple features

 Ideally our input should look like this:
• IBM NNP allcaps … B-ORG

• Corp. NNP title … I-ORG

• hired VBD lower … O

• Kim NNP title … B-PER

• Jung NNP title … I-PER



Decoding - CRF

Efficient decoding over multiple features can be 
done using Conditional Random Fields (CRF)

We do not have time to implement CRF in this 
course

 For our purposes, a Linear Chain CRF is 
• a sequence label decoder equivalent to a Viterbi decoder 
• using multiple input features 
• and arbitrary functions for features over the sequence

Advanced reading: Sutton & McCallum (2006) in 
Canvas (optional!)



What are the probabilities?

For smaller datasets, CRF taggers can learn 
joint discrete feature value distributions:
• Python library: 
 pip install python-crfsuite (Okazaki 2007)

• Good off the shelf CRF tagger:
 Marmot (Müller et al. 2013), 

http://cistern.cis.lmu.de/marmot/

• CRF NER tagging example in Canvas:
 ner/crf_entities.py

http://cistern.cis.lmu.de/marmot/


Neural sequence labeling

Since features can be anything…
For larger datasets, we can use neural 

networks
Word embeddings as features



Popular libraries

Flair (Akbik et al. 2019)

AllenNLP (Gardner et al. 2018)

NCRF++ (Yang & Zhang 2018)



Example – Flair (Akbik et al. 2019)

from flair.models import SequenceTagger

# pretrained NER tagger
tagger = SequenceTagger.load('ner')

sentence = Sentence('George Washington went to Washington .')

# predict NER tags
tagger.predict(sentence)

# print sentence with predicted tags
print(sentence.to_tagged_string())

George <B-PER> Washington <E-PER> went to Washington <S-LOC> .



Homework – for Nov 17
 Turn viterby_simple.py into a trainable tagger!

• Split the training filein data/ en_gum-ud-train.conllu into a list of lines.
• For each line that contains a tab ("\t"), split it by tab to collect the word 

(second column) and PTB part of speech tag (5th column, i.e. [4])
• Use a dictionary to track frequencies for:
 Each word as each tag
 Each transition from the last tag to the next tag
 Divide by total number of words to make probabilities and put them into the same 

nested dictionary structure used by the viterby tagger.

• Bonus: Now read the file en_gum-ud-dev.conllu to get test sentences 
(sentences are separated by blank lines)
 Collect the words in each sentence from the 2nd column (column [1])
 Save the correct POS tags from the 5th column as well
 Modify viterbi() to return the optimal list of tags
 Get tags for each sentence using viterbi and check: for how many tokens did the tagger 

find the right solution?

• Bonus question: for how many sentences is the tagger 100% correct?


