
LING-362

Introduction to
Natural Language Processing

Eliza II / Finite State Methods I

Recap: Dictionaries

New empty dictionary:
prefixes = {}

Or with some initial values already:
prefixes = {"+1":"US", "+972":"IL", "+63":"PH"}

Adding and accessing values:
prefixes["+52"] = "MX"

print(prefixes["+52"])
'MX'

Better phone scraper: intl. prefix dictionary

Make a prefix dictionary

prefixes = {}
prefixes["+1"] = "US"
prefixes["+52"] = "MX"
prefixes["+63"] = "PH"
prefixes["+972"] = "IL"

Better phone scraper: intl. prefix dictionary

Regex with two groups this time:

lines = text_about_phones.split("\n")
phone_pattern = r'\(?(\+[0-9]+)?\)? ?((\(?[0-9]+\)? ?)+)'

(+972) (123) 456 (789)

Better phone scraper: intl. prefix dictionary

for line in lines:
match = re.search(phone_pattern,line)
if match is not None:

prefix = match.group(1) # The prefix
if prefix is not None: # Could be None, since it's (…)?

if prefix in prefixes: # Could be an unknown prefix
country = prefixes[prefix]

else:
country = "UNKNOWN"

else:
country = "UNKNOWN"

phone_number = match.group(2)
phone_number = clean_number(phone_number)
print(country + " " + phone_number)

Output

> python phones_prefixes.py

MX 015512345678

MX 015512345678

MX 5512345678

PH 45551234

IL 26333333

US 2021234567

Pig Latin

def pig_latin(human_word):

edited_word = human_word
if re.search(r'^[aeiou]',edited_word) is not None:

edited_word += "hay" # a += b is same as: a = a + b
else:

edited_word = re.sub(r'^([^aeiou])(.*)',r'\2\1ay',edited_word)
return edited_word

Recap: while loop

Keeps running, checks condition every new run
 Indentation indicates scope, like for loop
Note nested indentation for if inside loop

count = 0
words = ["I","like","cake",",","too","."]
output = []
while count < 3: # Get first 3 words

output.append(words[count])
count += 1

Did you find any problems with Eliza?

>I want to challenge myself

If you got to challenge myself, then what would you

do?

Problems:
Morphology
Syntax
Semantics
Pragmatics
Memory?

Solutions:
More patterns
More reflections
Completely new mechanisms

Making Eliza better

 Some ideas:
• Talking about brothers and sisters (be conservative!)
• Support for reflexive pronouns to fix this:
>I want to challenge myself

If you got to challenge myself, then what would you do?

• A pattern to make Eliza repeat what you said:
> Just tell me "you're beautiful".

you're beautiful

• … more clever stuff??

Brainstorm at:
https://corpling.uis.georgetown.edu/etherpad/p/eliza

https://corpling.uis.georgetown.edu/etherpad/p/eliza

Homework – nltk+regex practice

Finding negations
(submit before class Wednesday)
You are given a poem in a text file

• Read the file into Python using argparse [2 points]
• Tokenize it with NLTK [2 points]
• Loop through tokens, using re to find and print all

negations: [2 points]
 No, not, n’t, never, none, nobody, …

 Adjectives in: un-, non-, im-, in-…

 You should catch these in upper and lowercase!!

• Extra credit: use a dictionary to track frequencies of each
negative word and print the frequencies [2 point]

From regex to natural language

Regular expressions describe a simple type of
grammar
• For example, you could think of a regex:

/D?A*N/

• As describing a Noun Phrase:
Determiner? (Adj)* Noun

• Just replace each noun with N, each Adj with A…

• We can now recognize noun phrases!
(why should we want to?)

From regex to natural language

 In fact, syntax is more complex than what we
can express with regex:

pick the kids up: /VDNP/

• But only certain verbs take certain particles, objects…

• Can't prevent matching:

sleep the kids up

pick the kids over

From regex to natural language

But for morphology, word formation is often
describable using something like regex:
• Super anti adverbs: /(super)?(anti)?ADJ(ly)?/

• Noun compounds: /N+N/

But what is ADJ? or N?
Can we do regex with a different 'alphabet'?

A grammar of rexpressions using any
'alphabet' is called a regular language

Regular languages

 In fact we can create a regular language
grammar using: (see reading from J&M 2008)
• Some alphabet Σ with symbols a, b, c…

• Any single symbol is a possible regular grammar (just a)

• Any union (a OR b), concatenation (a THEN b) or
Kleene star (a*) of a symbol or language

Using these constraints, we can build any
regular grammar using any set of symbols

Finite State Automaton - FSA

Each FSA can recognize a certain language, using:
• A finite number of states, including start and end
• Transitions depending on input

More formally:
• FSA ≡ {Q, q0, F, Σ, δ(q,i)}

Where:
• Q is a set of possible states qi… qn

• q0 is the starting state within Q
• F is a subset of end states within Q
• Σ is the alphabet
• δ(q,i) is a set of allowable transitions from state q given

input i

Finite State Morphology

Among most successful applications of FSA
Popular in agglutinative languages (Turkish,

Japanese), and highly inflected more or less
concatenative ones (e.g. Slavic, Finnish)

Basic tasks:
• Morphological parsing

• Generation

From NL input to states

 Famous Turkish example (Jurafsky & Martin 2008,
after Kemal Oflazer):
• Uygarlaştɪramadɪklarɪmɪzdanmɪşsɪnɪzcasɪna

civil-bec-caus-npot-part-pl-p1pl-abl-past-2pl-adv
"such that you can't be made civilized by us"
(civil-ize-ate-unable-ing-s-our-from-did-you-ly)

Morphemes follow a particular order
Many are optional
Possible word formations can be described via

states…

Morphological parsing

The task:
• Given some word in language X as input:
• Output lexicon forms of constituents
• Give morphological analysis to the units

Ambiguity is possible:
• friendly (ADJ) = friend:N + ly:ADJ
• friendly (ADV) = friend:N + ly:ADJ + 0:ADV

(for ?friendlyly, Bauer 1992)

 In ambiguous cases: give all possible analyses
One way of dealing with Out Of Vocabulary items

English adjectives

What would we need to model forms like
these?
• happy, happier, unhappy, happily, unhappily

• lucky, luckiest, unlucky, luckily, unluckily

• big, bigger, biggest

• …

What is the alphabet like?
What transitions are possible?

First approximation

A first approach would be to model states for
each morpheme

Allow transitions based on order (Antworth 1990)

➢ Problems?

Problems

Some strange forms will be possible:
• unbiggest

• bigly

• …

Orthography would need to be handled:
• happyer

• happyly

Solutions

Automata must become more complex to
model the phenomenon

 Just the beginning:

Writing automata

Many frameworks exist for FSM
 Influential early framework: Xerox FSM (XFSM)

• Beesley & Karttunen (2003)

Many free (re)implementations:
• HFSM, Foma, OpenFST/PyFST

• Compiled in C++ for performance

• Bindings for Python available (though may be tricky to
compile, OS dependent)

We will use a simple version in Python

Concatenating and regex

The easiest way to represent morphology with
automata: composition

Simply concatenate automata to recognize
complex expression:
• Input1 -> Automaton1

• Input2 -> Automaton2

• Input1Input2 -> Automaton1+Automaton2

Can be implemented using regex
concatenation (a way of describing some FSAs)

Regex as symbol names

import re

first = r"(Bobby|Amir)"
last = r"(Zeldes)"

composed = "^" + first + last + "$"

print(re.search(composed, "BobbyZeldes"))
print(re.search(composed, "BobbySchmidt"))

Let's try the English adjectives

Suppose adjectives look like this:
• Can start with un-

• Have a stem like big or clear

• Can end in -er, -est

Can we compose a three part regular
expression to identify these?

Solution

import re

un = r"(un)?"

stem = r"(big|clear)"

suffix = r"(er|est)?"

composed = "^" + un + stem + suffix + "$“

Now we can recognize if a word is such an adjective!

Visualization

 It can be useful to plot out automata
We will see multiple plot types later
For simple regex strings you can use:

• https://regexper.com/

• Our phone expression: r"((\(?[0-9]+\)? ?)+)"

start
end

transition

state
group

https://regexper.com/

What about generation?

We can use library exrex to randomly walk
through regex states

> python -m pip install exrex

import exrex
Generate some forms
print("Generating all forms:\n")
outputs = exrex.generate(composed)

for output in outputs:
print(output)

A word about generators

exrex.generate() returns something that looks
like a list

But:
adjectives = exrex.generate(r"(un)?(big)(er)?")

print(adjectives[0])

{TypeError}'generator' object is not subscriptable

A word about generators

Generators act like lists in for loops
But they only fetch one item at a time
Save memory by not representing whole list
Can be converted to lists:

print(list(adjectives)[0])

big

Looping through our generator
Generating all forms:

 big
 biger
 bigest
 clear
 clearer
 clearest
 unbig
 unbiger
 unbigest
 unclear
 unclearer
 unclearest

