
LING-362

Introduction to
Natural Language Processing

Topic Modelling II

Topic Modelling

From form to meaning!
Today:

• More on documents as data points

• TF-IDF

• Latent Dirichlet Allocation (LDA)

Basic MWE merging –multiword.py

from nltk.tokenize import MWETokenizer
from nltk import FreqDist

mwe_list = [('palm', 'fronds'), ('coast', 'guard')]
mwe = MWETokenizer(mwe_list, separator='_')

tokens = word_tokenize("The coast guard saw palm fronds.")

mwe_tokenized = mwe.tokenize(tokens)

for term, freq in FreqDist(mwe_tokenized).most_common(10):
print(term + "\t" + str(freq))

Pretrained models

General NLP pipelines: Spacy, CoreNLP, gensim…
Or try Nathan Schneider’s MWE system:

• https://github.com/nschneid/pysupersensetagger

Trained on STREUSLE corpus:
• https://github.com/nert-nlp/streusle

You can also try writing your own
(hint: this can be formulated as a BIO sequence
labeling task)

https://github.com/nschneid/pysupersensetagger
https://github.com/nert-nlp/streusle

Collapsed frequencies: ‘palm fronds’

Collapsed frequencies:
• island 3
• coast_guard 2
• navy 1
• u.s._navy 1
• palm_frond 1
• castaway 1
• Honolulu 1
• Fanadik 1
• strand 1

Should we lower case?

Are MWEs sometimes
harmful?

How to measure distance?

We can measure distance in n dimensions
Problems:

• Document length

• Scaling

• Term specificity

• Collinearity

 0 2 4 6 8 10

 0
 2

 4
 6

 8
1
0

 0

 2

 4

 6

 8

10

island

fl
o
ri
d
a

n
a
v
y

doc3=[1,4,3]

doc2=[7,5,0]

Document length

Distance might seem like a good idea but…
• Longer documents have more words
 Short document may not mention U.S. Coast Guard often

 But the fact that it does so in just 100 words seems
significant

• Still, the angle
remains the same

➢Normalize length

➢Cosine similarity

 0 10 20 30 40 50

 0
1
0

2
0

3
0

4
0

5
0

 0

10

20

30

40

50

island

fl
o
ri
d
a

n
a
v
y

doc3=[1,4,3]
doc2=[7,5,0]

 0 2 4 6 8 10

 0
 2

 4
 6

 8
1
0

 0

 2

 4

 6

 8

10

island

fl
o
ri
d
a

n
a
v
y

doc3=[1,4,3]

doc2=[7,5,0]

10x navy …

Cosine similarity

Measure the angle between vectors:

cos 𝜃 =
𝐴 ∙ 𝐵

𝐴 𝐵

• Dot product of two vectors divided by the product of
their magnitudes
 Dot product: multiply vectors cell-wise and sum

 Magnitude: 𝑋 = 𝑥1
2 + 𝑥2

2. . +𝑥𝑛
2

Scaling

With cosine similarity, the proportion of word
frequencies gives the direction
• If word 1 appears once and word 2 appear twice:
 proportion 1:2

• Now consider words appearing 10 vs. 20 times:
 proportion 1:2

➢But is a word appearing twice really twice as
important as one appearing once?

➢ Is it the same for 10 vs. 20?

Scaling

A common solution is to take log frequencies
• E.g. log base 10

• Difference between
1 and 10 same as
difference between
10 and 100,
100 and 1000,
…
from math import log10

print(log10(5))
0.6 0.8 1.0 1.2 1.4

1
5

1
0

5
0

5
0
0

lo
g

1

10

100

1000

Term specificity

A more fundamental problem with VSMs is
that we have different ideas about what’s
important
• Very frequent (non-stop) word is important?
• Suppose our document contains:
 insurance 10

 try 10

 story 10

• What is it about?
• How can we tell which is more important?

Collection frequency

Some terms might generally be very frequent
• Appearance less surprising – assign less importance

• Use Collection Frequencies (sum over all documents,
adapted NYT example from Manning & Schütze 1999)
 insurance 10440

 try 10422

 story 23591 (less surprising)

• How are insurance and try still different?

Document frequency

Even with equal collection frequency, terms
appear in different amounts of documents

term collection document

 insurance 10 10440 3997

 try 10 10422 8760

 story 10 23591 10897

Can we combine these
somehow?

Just one number

To get just one number representing a term’s
relevance in a document:
• Use log term frequency (TF): log(TF)

• Weight it by proportion of documents with this term
(DF) in an N document collection

But we want inverse weighting – high
document count is bad, so:
• Inverse document frequency (IDF): log(N/DF)

TF-IDF

Most common weight function in Information
Retrieval:
• Weight for term i in document j (or 0 if unattested):

weight 𝑖, 𝑗 = 1 + log 𝑇𝐹𝑖,𝑗 ∙ log
𝑁

𝐷𝐹𝑖
• The IDF weighting for a unique term is maximal: log(N)
• For a term appearing in all documents: log(1) = 0

TF-IDF weights can be applied to frequencies
in a BOW model

Classifying documents

TF-IDF is great for finding distinctive terms
But it doesn’t tell us the best way to segment a

collection into topics
• We want to identify the most different kinds of

documents

• Words that characterize these ‘kinds’

• Degree of belonging to each of n topics, for each
document (multiple topics possible)

An approach to automatic “topics”

Latent Dirichlet Allocation (LDA) assumes:
• Words can have their own prior probabilities in each

possible topic

• Assume that any set of documents we see is an
example of the topic-based probabilities to realize
each word

• Each document is a mixture of the topics that
generated it

LDA – a caricature

Suppose we have 10 topics with different
probabilities for the same words:
• Mary cooked up a new schematic

Probably these words were generated
according to these topics:
• Mary cooked up a new schematic

P(Mary|religion) > P(Mary|cooking) > …

Legend:
Religion
Cooking
Engineering
…

The 'generative story'

According to LDA, documents are born like this
• For every document, some random mix of topics is

selected: 20% politics, 31% religion …

• Once those are known, each position in the document
is generated by some topic: randomly, word 1 gets to
come from the 'religion' topic

• Now a specific word is picked at random, based on its
probability in that topic – very likely to be 'church',
unlikely to be 'pizza' (but possible)

LDA – more formally

M
documents

N words in
document

Initial prior for each
topic being in a doc

Initial prior for a word
being in a topic

Topic distr. for each
document

Topic generating each
word in document

Words that
get chosen

Inferring latent variables

Now the problem:
• given the words, some idea of how many topics we

might have and what prior distributions are like
(incl. likelihood of each word)…

• Infer the latent variables that generated each
document

Specifically – we want θi for each document i
• Because if we know what words come from which

topic with what likelihood…
• We can get the topic mixture that generated that

document with the highest likelihood

Let's do it!

There are several methods to infer θi
• Often: Gibbs sampling (similar to MCMC)
• Gamble on the parameters, see if you get something like

our collection, if not change parameters
• Initially assume each word comes from a random topic –

get θ, α and β
• Run through data again – is this result likely? -> change

We can't get into these methods in depth in this
course

But we can use some libraries to do this for us

➢ Further reading: Blei et al. (2003), Grus (2015)

Library lda

First we install the lda library from the
command line:
> pip install lda

Code in lda_example.py

Imports

Example adapted from Chris Strelioff
from numpy import argsort
import lda.datasets

Example data
Get some actual document data
This is a two dimensional table of
documents in each row, word frequencies in each column
reuters_data = lda.datasets.load_reuters()

Get a list of document titles to help interpret results –
corresponds to each row in the table
reuters_titles = lda.datasets.load_reuters_titles()

Get the vocabulary in the documents - corresponds to each
column in the table
reuters_vocab = lda.datasets.load_reuters_vocab()

Testing the data
print("We are classifying " + str(len(reuters_titles)) + " documents")
print("with " + str(len(reuters_vocab)) + " distinct words.")

-- We are classifying 395 documents
-- with 4258 distinct words.

print("For example the title of document 5 is: " + reuters_titles[5])

-- For example the title of document 5 is:
-- 5 INDIA: Mother Teresa's condition unchanged, thousands pray. CALCUTTA

print("Word 4 is: " + reuters_vocab[4])
print("Its frequency in document 5 is: " + str(reuters_data[5][4]))
-- Word 4 is: mother Its frequency in document 5 is: 24

Fitting the model
lda_model = lda.LDA(n_topics=20, n_iter=500)
lda_model.fit(reuters_data)

topic_word_mapping = lda_model.topic_word_

Let's check the probability of 'mother' (word 4) in topic 3
Notice that numpy n-dimensional arrays use
commas between dimensions (like R)
print("The probability of word 4 in topic 3 is:")
print(topic_word_mapping[3,4])

-- The probability of word 4 in topic 3 is:
-- 2.70009018301e-06

Getting top words for each topic
Checking the top words for each topic:
print("\nThe top 5 words in each topic:\n" + "="*50)

for topic in topic_word_mapping:
Get list of words for this topic from the mapping,
sorted by descending probability
words_in_topic = []
sorted_indices = list(argsort(topic))[::-1]
for i in range(5): # Get top 5

index = sorted_indices[i]
words_in_topic.append(reuters_vocab[index])

print(", ".join(words_in_topic))

Output

The top 5 words in each topic:
==
world, million, against, group, court
harriman, clinton, u.s, ambassador, paris
pope, vatican, surgery, hospital, rome
died, king, service, funeral, michael
russian, russia, soviet, moscow, communist
…

Getting the best topic per document

Check the top topic for each document
doc_topic_mapping = lda_model.doc_topic_

Let's see if the first 10 cluster nicely
for n in range(10):

argmax returns the column with the maxmimum value for this row
best_topic = doc_topic_mapping[n].argmax()
print("doc" + str(n) + ", titled: " + reuters_titles[n])
print("Best topic: " + best_topic)

Output
doc0, titled: 0 UK: Prince Charles spearheads British royal revolution. LONDON 1996-08-20
Best topic: 10

doc1, titled: 1 GERMANY: Historic Dresden church rising from WW2 ashes. DRESDEN, Germany
1996-08-21
Best topic: 4

doc2, titled: 2 INDIA: Mother Teresa's condition said still unstable. CALCUTTA 1996-08-23
Best topic: 15

doc3, titled: 3 UK: Palace warns British weekly over Charles pictures. LONDON 1996-08-25
Best topic: 10

doc4, titled: 4 INDIA: Mother Teresa, slightly stronger, blesses nuns. CALCUTTA 1996-08-25
Best topic: 15

doc5, titled: 5 INDIA: Mother Teresa's condition unchanged, thousands pray. CALCUTTA 1996-08-
Best topic: 15

Plotting word distributions

import matplotlib.pyplot as pplt

Make two rows, one column of plots
figure_container, my_plot_axes = pplt.subplots(2, 1)

Fill the subplots with each of the following two topics
my_plot_axes[0].stem(topic_word_mapping[4,:])
my_plot_axes[1].stem(topic_word_mapping[15,:])

pplt.show()

Reminder: all words are in all topics!

What else can we read?

 If you want more practice, work through the
NLTK book, chapter 8, up to section 5
• Review of constituent parsing

• Some additional ideas about sentence structure

What to read next?
• After the final: I recommend Chapter 6 – supervised

text classification with some more advanced Python

