LING-362

Introduction to
Natural Language Processing

The bag of words model - review

® Documents as frequency lists
® No information about word order
® Sparse data: lots of O's

Bags of words as vectors in a matrix

navy

Island

3
maroon 0
U.S. 5

0

Florida

How to measure distance?

® Documents as vectors

® Similarity as distance

\/Z(ai _bi)2

florida

® Problemes:
e Document length . o
e Scaling o
e Term specificity | :

o Collinearity e 2T

island

self
[

Cosine similarity

® Works much like cosine in
trigonometry:
e 1->zero angle (same)
e 0 -> orthogonal (90°)
e -1 -> opposite (180°)

Cosine similarity

® Measure angle between vectors for similarity:

A-B
1AIlIB]

cos @ =

e Dot product of two vectors divided by the product of
their magnitudes
Dot product: multiply vectors cell-wise and sum

Magnitude: [|X|| = /xZ + x2.. +x2

self
@ t+1 o t+2 @
|

" Log scaling

@ Difference between
1 and 10 same as
difference between
10 and 100,

100 and 1000,

from math import log10
print log10(5)

@ t+1 o t+2
h

log
50 500

5 10

©1000

©100

© 10

1.2

Collinearity

® Consider some terms that go together

@ If a document contains these, it’s about ..?
e foreign policy
e lipstick
e Xi Jinping
e Revion

Collinearity

@It might be a good idea to combine Revlon and
lipstick, or Xi Jinping and ...
e Make some sort of ‘combined word’

e Or a ‘weighted combined word’:
WordX = 75% * f(Xi_Jinping) + 125% * f(policy)

» Dimensionality reduction
» How many words do we want to keep track of?
> Can’t study this in depth for time reasons ®

self
@ t+1 o t+2 @
=

Handling specificity - TF-IDF

term collection document
insurance 10 10440 3997
try 10 10422 8760
story 10 23591 10897

e Weight for term i in documentj (or O if unattested):
. . N
weight(i, /) = (1 + log(TFl-J-)) - log DF,

e The IDF weighting for a unique term is maximal: log(N)
e For a term appearing in all documents: log(1) =0

self

@ - o - @
[

[
[
|

| So if we know all this

® We can use combined collection and document
frequencies!

e |sland wl*3
e Coast Guard w2*2 e -
- W3*1 s this as much abou

Honolulu as it is
about Fanadik?

e U.S. Navy w4*1
e palm frond w5*1

e castaway wb*1
e Honolulu w7*1
e Fanadik w8*1

e Strand w9*1

se
[
@ t+1 o 12
|

Classitying documents

® TF-IDF is great for finding distinctive terms
®But it doesn’t tell us the best way to segment a

collection into topics

 We want to identify the most different kinds of
documents

e \Words that characterize these ‘kinds’

e Degree of belonging to each of n topics, for each
document (multiple topics possible)

self
(3

@ - o - @
[

An approach to automatic “topics”

® Latent Dirichlet Allocation (LDA) assumes:

e Words can have their own prior probabilities in each
possible topic

e Assume that any set of documents seen is an example
of the independent topic-driven probabilities to realize
certain words

e Each document is a mixture of the topics that
generated it

LDA - a caricature

® Suppose we have 10 topics with different
probabilities for the same words:
e Mary cooked up a new schematic

® Probably these words were generated

according to these topics: Legend:

. Religi
» Mary cooked up a new schematic clslon
Cooking

Engineering
P(Mary|religion) > P(Mary| cooking) > ...

self
@ t+1 o t+2 @
'

The 'generative story’

® According to LDA, documents are born like this

e For every document, some random mix of topics is
selected: 20% politics, 31% religion ...

e Once those are known, each position in the document
is generated by some topic: randomly, word 1 gets to
come from the 'religion’ topic

e Now a word is picked at random, based on its
probability in that topic — very likely to be 'church’,
unlikely to be 'pizza' (but possible)

LDA - more formally

Topic distr. for each Initial prior for a word
document being in a topic

Words that
get chosen

Initial prior for each

topic beinginad
opic being in a doc e

document

Topic generating each
word in document

Inferring latent variables

® Now the problem:

 given the words, some idea of how many topics we
might have and what prior distributions are like (incl.
likelihood of each word)...

e Infer the latent variables that generated each
document

® Specifically — we want &i for each document i

e Because if we know what words come from which
topic with what likelihood...

e We can get the topic mixture that generated that
document with the highest likelihood

self
@ t+1 o t+2 @
=

Let's do it!

® There are several methods to infer Ji
e Often: Gibbs sampling (similar to MCMC)

e Gamble on the parameters, see if you get something like our
collection, if not change parameters

e |nitially assume each word comes from a random topic —
get ¥, a and 6

e Run through data again —is this word’s topic likely? -> change
® We can't get into these methods in depth in this course
® But we can use some libraries to do this for us

» Further reading: Blei et al. (2003), Grus (2015)

@ - o - @
|-

Library lda

@ First we install the Ida library from the

command line:
> pip install Ida

Imports

from numpy import argsort, array
import Ida
import |da.datasets

Example data

Get some actual document data

This is a two dimensional table of

documents in each row, word frequencies in each column
reuters_data = lda.datasets.load reuters()

Get a list of document titles to help interpret results —
corresponds to each row in the table
reuters_titles = Ida.datasets.load _reuters_titles()

Get the vocabulary in the documents - corresponds to each
column in the table

reuters_vocab = |da.datasets.load_reuters_vocab()

f

Testing the data

print("We are classifying " + str(len(reuters_titles)) + " documents")
print("with " + str(len(reuters_vocab)) + " distinct words.")

-- We are classifying 395 documents
-- with 4258 distinct words.

print("For example the title of document 5 is: " + reuters_titles[5])

-- For example the title of document 5 is:
-- 5 INDIA: Mother Teresa's condition unchanged, thousands pray. CALCUTTA

print("Word 4 is: " + reuters_vocab[4])
print("Its frequency in document 5 is: " + str(reuters_data[5][4]))
-- Word 4 is: mother Its frequency in document 5 is: 24

y

Fitting the model

lda_model = lda.LDA(n_topics=20, n_iter=500)
lda_model.fit(reuters_data)

topic_word_mapping = lda_model.topic_word__

Let's check the probability of 'mother' (word 4) in topic 3
Notice that numpy n-dimensional arrays use

commas between dimensions (like R)

print("The probability of word 4 in topic 3 is:")
print(topic_word _mapping[3,4])

-- The probability of word 4 in topic 3 is:
-- 2.70009018301e-06

self
@ t+1 o 12

Getting top words for each topic

print("\nThe top 5 words in each topic:\n" + "="*50)

for topic in topic_word_mapping:

words_in_topic =[]
sorted_indices = list(argsort(topic))[::-1]
foriinrange(5):
index = sorted_indices]i]
words_in_topic.append(reuters_vocab[index])

print(", ".join(words_in_topic))

/
| /

Output

The top 5 words in each topic:

world, million, against, group, court
harriman, clinton, u.s, ambassador, paris
pope, vatican, surgery, hospital, rome
died, king, service, funeral, michael
russian, russia, soviet, moscow, communist

@ - o - @

Getting the best topic per document

doc_topic_mapping = lda_model.doc_topic_

for nin range(10):

best_topic = doc_topic_mapping[n].argmax()
print("doc" + str(n) + ", titled: " + reuters_titles[n])
print("Best topic: " + best_topic)

Output

docO, titled: 0 UK: Prince Charles spearheads British royal revolution. LONDON 1996-08-20
Best topic: 10

docl, titled: 1 GERMANY: Historic Dresden church rising from WW?2 ashes. DRESDEN, Germany
1996-08-21
Best topic: 4

doc2, titled: 2 INDIA: Mother Teresa's condition said still unstable. CALCUTTA 1996-08-23
Best topic: 15

doc3, titled: 3 UK: Palace warns British weekly over Charles pictures. LONDON 1996-08-25
Best topic: 10

doc4, titled: 4 INDIA: Mother Teresa, slightly stronger, blesses nuns. CALCUTTA 1996-08-25
Best topic: 15

doc5, titled: 5 INDIA: Mother Teresa's condition unchanged, thousands pray. CALCUTTA 1996-08-
Best topic: 15

Plotting word distributions

import matplotlib.pyplot as pplt

figure_container, my_plot_axes = pplt.subplots(2, 1)

my_plot_axes[0].stem(topic_word _mapping[4,:])

my_plot_axes[1].stem(topic_word mapping[15,:])

pplt.show()

Reminder: all words are in all topics!

500 1000 1500 2000 2500 3000 3500 4000 45

2000 2500 3000 3500 4000 4500

What else can we read?

@ If you want more practice, work through the
NLTK book, chapter 8, up to section 5

e Review of constituent parsing
e Some additional ideas about sentence structure

® What to read next?

e After the final: | recommend Chapter 6 — supervised
text classification with some more advanced Python

e Simplified example in Canvas:
Code > topic_modeling > doc_classification.py

self
@ t+1 o t+2 @
=

Preparing for the final

® The final is scheduled for:
e Thu, 12/16, 12:30-2:30, ICC 116 (but always check!)

® The mock exam is online

e We will discuss the questions in class next time
 Feel free to prepare questions

® The real exam will have the same structure —
no need to produce formulas, but important to
understand underlying concepts!

self
@ t+1 o t+2 @
=

