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Mini hackathon results



Mini hackathon results

Covered:
• 10 nouns
• 6 verbs
• 5 prepositions
• 5 auxiliaries (plus null)
• All persons (except 2sgF)

And phonotactic rules!
• Article lengthening

Cleaned up solution in Code > Foma



What is this for?

Coptic Scriptorium -
https://copticscriptorium.org/
• Read and analyze

Coptic texts

• Online dictionary

• NLP tools

• Syntactic, 
morphological and 
semantic search

https://copticscriptorium.org/
http://www.modernphoenix.net/scriptorium/index.html
http://www.neh.gov/


Grammar and usage

Regular languages (and FSAs) have a formal 
grammar

Transitions between states
No knowledge about usage

• No memory of previous states

• No experience from previous runs



Memory and experience

At the micro level, remembering previous 
context can be helpful:
• Can we disambiguate? What if we could stop over-

generation by considering earlier input? 

• Is this analysis correct?
 Number: numb+er = numb+ADJ+COMP

• How about now?
 … the number is …

 … is number than …

 … more number one …



Memory and experience

At a macro level, experience helps us even 
without context:
• number=‘digits’ more often than number=‘more 

numb’

And with context, for categories:
• Comparative more likely if than appears



Brief review: probability

Many questions in NLP are a matter of 
probability:
• number is an adjective:
 Possible (generated by FSM)

 Unlikely (rare in corpus data)

 Does occur somewhere!

 Some contexts truly ambiguous

Declared goal of most statistical approaches to 
NLP: be wrong as rarely as possible (but we will 
be wrong sometimes)



Frequentist probability

For some scenarios we may have a rational 
expectation of exact probabilities:
• Coin toss: p(heads) = 0.5   (or tails: 0.5)

• Dice: p(⚃)= 1/6    (or not: 5/6)

• Note: 
 We know all possible outcomes

 Probabilities sum up to 1!



Frequentist probability

For many empirical phenomena we do not 
have such numbers
• p(rain tomorrow) = ?

• p(‘number’ is an adjective) = ?



Frequentist probability

We can estimate probabilities based on 
previous experience:
• Guess October 6, 2021 will be like last October 6… 

(could have been a fluke that year?)

• Maybe take average precipitation and temperature of 
last 10 years?

More data typically means better predictions



Conditional probabilities

Won’t the weather today depend on 
yesterday?
• Conditional probabilities are written like this:
 p(rain today|rain yesterday)



Conditional probabilities

 If two events A, B, are independent, then:
• p(A|B) = p(A)

For independent events, the chain rule applies: 
• p(A&B) = p(A)*p(B)

For example:
• P(⚃ & ⚅) = ?

1/6 * 1/6 = 1/36



Back to linguistic experience

Probabilities without context:
• p(number=digits) > p(number='more numb')

And with context:
• p(comparative|'than' is next) > p(noun|'than' is next)

➢How can we model ‘context’ more generally?



N-gram models

A very simple (and efficient) way of modeling 
context is using n-grams
• Decide on a useful context size, often 3 words

• Save analyses not of individual words, but of words 
given the previous 2 words – trigram model

Image:  
googlesystem.blogspot.com



N-gram models

Why 3?
Any number can be chosen
Key consideration: amount of data available

• Choosing long chains increases accuracy

• Different answer for: 
 Find him number than

 Find him number of

• But: potentially few instances of each chain

• Data sparseness problem



N-gram models

Rules of thumb:
For typical 'million word' resources – trigrams 

are taken
 'Low resource languages' with 10K samples –

bigrams
Gigaword corpora – 4, 5-grams 

(e.g. Google n-grams)



Are n-grams realistic?

Humans use a lot of linguistic information not 
covered in n-grams
• Can understand novel combinations: 

colorless green ideas

But humans probably do store n-grams:
• beam me …

• come out come out …

• a twist of …



Experiment

• once in a while once in line to

• in over the past all over the world

• as if the click as if they were

• got away with it scribble away and confide

>11

>20

20<

27<



What are they good for?

The idea of using n-grams to model 
language data is due to Markov (1913):
• Looked at Russian orthography in 

Pushkin’s Eugene Onegin
 Frequency of characters followed normal distribution 

(despite very complex poetic meter)

 Language is not random – strong deviation from 
independence

 Phonotactics and morphology in a language's written script



What are they good for?

The extension to word models became 
obvious and was popularized in the 50s 

Today: 
• language models in machine translation
 Given N possible translations outputted by a system…
 Rank each by likelihood as given by the model

• predictive keyboards (cellphones)
• augmentative communication (for disabilities)
• Optical Character Recognition (OCR)
• Speech to text



Example - SwiftKey

Images: SwiftKey, PCWorld



Building our own!

Consider the following texts, 
by Charles Dickens*:

bigram model trigram model 4-gram model

*sort of

depose to linger yet, 
pointing upward 
! ' are melting 
from me, pointing 
upward

signature under such 
circumstances, Mr. 
Mell, formerly poor 
pinched usher to my 
Middlesex magistrate

that I stole into the 
next street, and 
open a chemist's 
shop? Whether he 
could

[Wikimedia]



DIY natural language generation!

Let's create Dickensian stories
We need:

• Dickensian training data and a way to read it

• Random selection

• A mechanism to choose best output for a story of a 
certain length

Download:
• ngrams.py

• dickens.txt



Reminder – reading files
parser = argparse.ArgumentParser()
parser.add_argument("file")

options = parser.parse_args()
training_file = options.file

a = open(training_file).read()

with open(training_file,'r') as f:

training_data = f.read()

…

counts = get_counts(context_length, training_data)



Learning the frequencies

To track frequencies of n-grams, we’ll need a 
dictionary tracking counts like this:
• Key: “In”, “the”
 Value: another dictionary:
 Key: “beginning”, value: 2

 Key: “end”, value: 5

 …

• The function get_counts() should build this dictionary



Learning the frequencies

 It looks like we could use a list for the key:
freqs[["in","the"]] = {"end":5, "beginning": 2}

Actually, this is forbidden:
• Dictionary keys must be immutable
• List values could be changed: 
 We could change the second list member of [“in”, “the”]

my_key = ["in","the"]
freqs[my_key] = 5

my_key[0] = "by"

 Dictionary would be broken



Tuples: not quite Lists

Python has a cousin data-type to lists: tuples
• Tuples are like lists, but they are immutable

• Once defined they can’t be changed

• Look a lot like lists in round brackets:

# This is a list:
a = ["in", "the"]

# This is a tuple:
b = ("in", "the")



Tuples: not quite Lists

 In practice, tuples are used:
• When an immutable data type is required

• In contexts where something like a list:
 Has a specified, invariable length

 Each position has a predictable meaning

Example: person’s height, weight and age:
# Don’t need to append or change these:

stats = (175, 72, 43)



Another helper function: range()

We’ll need to count words up to the needed 
context size (last two words for trigrams)

We can use the range() generator for this:
# Give us a list with the first 10 numbers

list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]



get_counts()
def get_counts(context_length, training_text):

counts = {}

tokens = word_tokenize(training_text)
for i in range(len(tokens) - context_length):

context = []
next_token = tokens[i + context_length]
for j in range(context_length):

context.append(tokens[i + j])

# Add 1 to frequency or create new dictionary item for this tuple
if tuple(context) in counts:

if next_token in counts[tuple(context)]:
counts[tuple(context)][next_token] += 1

else:
counts[tuple(context)] = {next_token: 1}

else:
counts[tuple(context)] = {next_token: 1}

return counts



generate_from_file(context_length,training_file,output_length=10)

first_tokens = choice(counts.keys())  # Choose a random first context
output_list = list(first_tokens)
current_context = first_tokens

for i in range(output_length):
next_context = max(counts[current_context], key=counts[current_context].get)
temp = list(current_context)
temp.pop(0)  # Remove first token in previous context
temp.append(next_context)  # Add new token for the next context
next_token = temp[-1]
next_context = tuple(temp)

current_context = next_context

output_list.append(next_token)

print(" ".join(output_list))



Spot the genre

these changes into our other midmarket power 
forms . Thanks again for your help on this . Carol 
St. Clair EB 3889 713-853-3989 ( Phone ) 713-
646-3393 ( Fax ) carol.st.clair @ enron.com All , 
Please see the attached Interconnect Agreement 
with Questar . Transwestern will own and 
operate the interconnect . Questar may be able 
to purchase material , but some of



Spot the genre

Furies , and I 'll be as good as my word ; but 
speciously for Master Fenton . Well , on went he 
for a search , and away went I for foul clothes . 
But mark the sequel , Master Brook-I suffered 
the pangs of three several deaths : first , an 
intolerable fright to be detected with a jealous 
rotten bell-wether



Spot the genre

ambush in her system , ready , at the corner of 
the street , with his great kite at his back , a very 
monument of human misery . My aunt went on 
with a quiet enjoyment , in which there was very 
little affectation , if any ; drinking the warm ale . 
'She 's the most ridiculous of mortals . But



At home

We are not ready to expand the ngram code 
yet

But you should find some time to practice 
Python!

Try working through Chapter 3 of NLTK:
• http://www.nltk.org/book/ch03.html

• Learning about file I/O

• Getting data from the internet

• More practice with lists, regex, nltk, and more

http://www.nltk.org/book/ch03.html

