LING-362

Introduction to
Natural Language Processing

Talks etc.

®Sep. 10 — me & co. — Digital Classicist Seminar,
Named Entities in Coptic Antiquity
® Sep. 24:

e Gemma Boleda (UPF Barcelona),
Computational Semantics, GU Linguistics Speaker
Series

e 19th Semi-Annual GU-CS Graduate Research — 3/4 talks
with CL/IR topics:
https://www.georgetown.edu/event/the-19th-semi-
annual-gu-cs-graduate-research-presentation-days-
session-i/

self
@ t+1 o t+2 @

[

https://www.digitalclassicist.org/wip/wip2021.html
https://www.georgetown.edu/event/the-19th-semi-annual-gu-cs-graduate-research-presentation-days-session-i/

Discussion - Bar Hillel's pen

@ Is Bar Hillel right?

® Can context ever get pen right?

e Does perfect MT require perfect Al?
e Can we get much better even without it?

How right is Bar Hillel today?

X The box s in the pen X La caja esta en el boligrafo

X The box is in the pen| X Die Kiste ist im Stift

X Thebox is in the pen X MlErofmizhy FT
X The box is \in the pen La boite est dans le stylo

X Theboxis in the pen| X Pudetko jest w dtugopisie

X The box is in the pen X BfEEE

How right was Bar Hillel last year?

The box is|in the pen

The box is in the pen

The box is in the pen

The box isin the pen
The box is in the pen

Three(!) years ago:

v/ The box is in the pen.

X

X

X La caja esta en la pluma

X Die Box befindet sich im Stift

MBIERVICA->TWET

La boite est dans le stylo

Pudetko znajduje sie w dtugopisie

* La caja esta en el corral.

Today

® Python basics
e Doing math
e Dealing with variables
e Processing strings of text
e Starting our very first program

® NLTK

e Our first Class of objects
e Some neat ready-made methods

Python basics

® Programming is all about computing:
e Getting some values from somewhere
e Storing them in variables
e Doing some calculations
e Outputting the result

@ First example: doing math

Starting the Python console

® Python is an 'interpreted' language

e Commands are read one at a time (from script / CLI)
 No compilation

e Slower than (some) compiled languages

e Easier to modify / debug

e Cross platform (only interpreter OS-specific)

@ You can start the interpreter from the
command line (CLI, terminal) by running
python (*or python3 etc.)

self
@ t+1 o t+2 @
=

Time to ask Python some questions

® Assigning from variables:
>>>p=8*3
>>> b
24
>>>(a+a)/4#Normal—in Python 3
1.5
>>> (a +a)// 4 # What's this?
1
>>>(a+a) % 4 # The modulo '%' gives us the remainder

self
@ t+1 o t+2
| ®

Time to ask Python some questions

® Basic math:
>>>5*8
40

>>> a = 3 # assign the variable 'a' the value 3
>>>a * 3

9
>>>a ** 2 # use ** for powers

A word about data types

® Python treats numbers like 3, 4 (and our a) as integers
@ Calculations with integers normally result in integers

(no fractions)
® We can turn a variable into a float explicitly

>>>a=3

>>> 3 = float(a)

>>> Qq

3.0

>>>(a+a)//4

1.5

>>> (a +a) /4 # This now works in Python 2 and 3
1.5

self
@ t+1 o t+2 @

[.

A word about data types

® We can convert integers to strings:
>>>a=4
>>2> 4
4
>>> b = str(a)
>>> b
n

A word about data types

® And back:

>>> ¢ = int(b)
>>> C
4
® Note the error — be aware of your data types!
>>> c+b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str’

self
@ t+1 o t+2 @
-

Dealing with text

® The most frequent data we'll deal with is
characters, or more often strings of characters
® Two strings can use ‘math operations’ too:
>>> word1 = 'hello’
>>> word2 = 'world’
>>>wordl +' '+ word2 # Adding strings = concatenating
'hello world'
>>>wordl * 2 # Multiplying = repeating
'hellohello’

self
@ t+1 o t+2 @

[.

-

Breaking down strings

>>> word1[0]
"

>>> word1[0:2]
he'

>>> word1[3:]
o'

>>> word1[-1]
"0’

>>> word1[0:-1]

‘hell’

self
@ t+1 o t+2

® Strings are really just lists of characters
® We can access individual positions, starting with O:

Give me character 0 — the first one

Start at O — stop just before 2 (first L)
Start at 3, don't stop

Give me the -1th character = the last

Start at 0 — stop just before -1 (=the last)

4

Using built-in functions

® Python comes with many useful functions
® Called by name with brackets and arguments
® For example, max() gives you the largest of the
input numbers:
>>> max(3,6)
6

® The function len() gives you the length of a
variable:

>>> |len('hello')
5

self
=00
|

Boolean comparisons

® Python can also tell you if something is true:
>>>5> 2
True

>>>7 <=6 The logical values True and False are also
False called Booleans (after George Boole)

>>>a3=6
>>> g ==
False
>>>3a =3
True

Exercise py

® We will write (toy) code to create the Classical
Greek perfect from present tense forms:

e luo "lrelease" thuo "I sacrifice"
e leluka "I have released" tethuka "l've sacrificed"
® Tips:
e Input — present form — need to get rid of the '0'
word_without o=...7
e Output —

need to duplicate first consonant: first_consonant = ..?
add -ka suffix: print(x + y + "ka")

self
@ t+1 o t+2 @
=

Solution

word = "luo”
first_consonant = word[0]
word_without_o = word[0:-1]

print(first_consonant + "e" + word_without_o + "ka")

Testing this in the IDE

® Write your code in PyCharm

@ Click on a line number to set a breakpoint
@ Use: run > debug

word =
tirst_consonant = word[@]
word_without_o = word[0:-1]

print(first_consonant + + word_without_o +

Yy

Doing Linguistics with Python

@ You can do lots of string editing yourself
® Write your own code for linguistic tasks
® But there are MANY libraries out there to do
things for you:
e NLTK — the Natural Language Toolkit

e spaCy (https://spacy.io/)
e Stanza (https://stanfordnlp.github.io/stanza/)
e Trankit (https://github.com/nlp-uoregon/trankit)

https://spacy.io/
https://stanfordnlp.github.io/stanza/
https://github.com/nlp-uoregon/trankit

Doing Linguistics with Python

® Using things off the shelf is generally a good idea

e Other people will know what you used

e Code easier to maintain
(Object Oriented Programming — more later)

e Less work for you

® There are also some cons:

e Might not do exactly what you expect
e Bugs harder to trace & i
e Version incompatibilities =
e Security vulnerabilities

self
@ t+1 o t+2 @
[

NLTK

@ Basically a collection of teaching demo-type
tools by Steven Bird and colleagues

® Not recommended by some for large scale
applications (alternatives: e.g. spaCy, Stanza,
neural network libraries like flair, ...)

® But actually widely used in a lot of
applications, especially if speed is not crucial

NLTK - a quick taste

® Download and install from
http://www.nltk.org
®Once installed, run Python in terminal

® Download resources: & il

>>> import nltk
>>> nltk.download()

h
Download Refresh

Server Index: http://www.nltk.org/nltk data/

Download Directory: |C: \Users\az364\AppData\Roaming\nltk data

t+1t+2 |

http://www.nltk.org/

NLTK - a quick taste

® With the resources installed, we can play with some texts:

>>> from nltk.book import *

*** Introductory Examples for the NLTK Book ***
Loading text], ..., text9 and sent], ..., sent9

Type the name of the text or sentence to view it.

Type:
textl:
text2:
text3:
text4:
text5:
text6:
text7:
text8:
text9:

'texts()' or 'sents()’ to list the materials.

Moby Dick by Herman Melville 1851

Sense and Sensibility by Jane Austen 1811

The Book of Genesis

Inaugural Address Corpus

Chat Corpus

Monty Python and the Holy Grail

Wall Street Journal

Personals Corpus

The Man Who Was Thursday by G . K. Chesterton 1908

NLTK - a quick taste

® What are these texts?

e Objects of the type or Class Text

e A 'customized' data type — we will learn a lot about
these

e Objects represent encapsulated, somewhat
autonomous pieces of code with specified functionality

® Objects have:

* Properties or attributes
e Functions or methods

self
@ t+1 o t+2 @
|

The Text object

@ You can test an object being of a certain Class:
>>> jsinstance(textl, Text)
True

@ You can access properties of an object using .
(dot) notation:

>>> textl.name
'Moby Dick by Herman Melville 1851

The Text object

® Objects can respond to many built-in functions:
>>> len(textl)
260819

® But they also have their own special functions,
methods, accessed with .name(arguments)

® The method .concordance() takes a String argument:

>>> textl.concordance("harpoon")

Displaying 25 of 76 matches:

hen they were nigh enough to risk a harpoon from the bowsprit ? Now having a ni
n a sunrise and a sunset . And that harpoon -- so like a corkscrew now -- was f
over the fire - place, and a tall harpoon standing at the head of the bed . B

, when Igfand behold , he takes the harpoon from the bed corner, slips out the

[y
O SmOu O
=

Methods and arguments

® Method arguments can be optional, in which
case a default is supplied

@ .concordance() can take 3 arguments:

e word (a Unicode string, the word being searched for)
e width (characters to display, default = 79)

e lines (how many results maximum, default = 25)

Methods and arguments

>>> textl.concordance("harpoon",10,10)
Displaying 10 of 76 matches:

risk a harpoon

And that harpoon

a tall harpoon

>>> textl.concordance("harpoon",lines=100)

Displaying 76 of 76 matches:

hen they were nigh enough to risk a harpoon from the bowsprit ? Now having a ni
n a sunrise and a sunset . And that harpoon -- so like a corkscrew now -- was f
over the fire - place, and a tall harpoon standing at the head of the bed . B

First notions about OOP

® A major line of thought for Object Oriented
Programming (OOP)
e Objects are encapsulated
e They do their job and expose methods
e We don't know (and don't want to know) how
® Advantages:

e Others can import our objects without studying our
code

e Possible to improve our objects without altering their
interface to the outside

self
(3

@ - o - @
|-

An example: .similar(word)

® The Class Text has a .similar function with the
signature: .similar(word, num=20)

@ It gives you num distributionally similar words
e How?
e Who cares: The Text Class takes care of this for us

e |f we have a better method to do this next week, we'll
release a new version of the Text Class

» This is nice and correct in principle... but stay
vigilant!

self
@ t+1 o t+2 @
=

An example: .similar(word)

>>> textl.similar("boat",num=4)
whale ship head sea

>>> textl.similar("Ahab",num=4)

it he that queequeg

>>> textl.similar("crew",num=4)
whale ship head boat

>>> textl.similar("harpoon",num=4)
whale boat ship sea

A (slightly) more serious program

® For our next exercise, we will build a program

to check whether our input is a palindrome:
e dud
e kayak

® Or not:
e bud
e magic

self
(3

@ - o - @
[

Palindrome checker

® Thinking about input and output:

e IN: a string of characters

e OUT:

An answer in English (String)
Or maybe: True or False (Boolean)

- Some starter code

test = "kayak"

Ideally we'd want something like this:
if test_is_a_palindrome:

print("The input

+ test + "' is a palindrome")

else:

print("The input ™ + test + "' is not a palindrome")

We need to learn more...

self
@ t+1 o 12
e

y

A word about indentation

® To know what to do ‘only if X' Python uses
indentation:

Xx=5 # Not indented, always do this part

y =user_input # Also not indented

if x >y: # Not indented, since this check always happens
print("it's bigger!") # This is indented — only do if x>y

® In other words, indentation determines the
scope of the if statement

self
@ t+1 o 12

[f, else and elif

® You can also test multiple alternatives:

X=5
y = user_input
if x>vy:

print("it's bigger!")
elif x<y:

print("it's smaller!")
else:

print("it's the same!")

| =

Quick exercise - imagine it's snowing!

® Hurray! Snow!!
® What will this code print?

snow_inches =40
campus_open_max =55
tomorrow_min =10
tomorrow_max = 20

if snow_inches + tomorrow_max < campus_open_max:
print("campus will definitely be open")

elif snow_inches + tomorrow_min < campus_open_max:
print("campus might be open")

else:
print("campus will definitely be closed")

self
@ t+1 o t+2

Another word about indentation

® Python accepts two ways of indenting:

e Initial spaces, often 4 (sometimes 2 are used)
e Tabs

® PEP8 recommends 4 spaces
® But many developers use tabs (more in EU)
® | will accept either, but no mixing!

> What is PEP?

self
(3

@ - o - @
[

Conventions and names

@It is a good idea to use informative names for
variables and functions

® To document your code inside your scripts
e Helps others work with your code
e Helps you to remember what you were doing
e Allows creation of automatic documentation
® High quality code is easy to maintain — but
what conventions should we use?

self
(3

@ - o - @
|-

PEP ptﬂ@ﬂ

® Python is developed using the Python
Enhancement Proposal (PEP) process

e Enhancements to the language in newer versions
(e.g. adding new operators, built in functions...)

e Various recommendations
@ Crucial for learning to write readable code:

e PEP 0008: Style Guide for Python Code
https://www.python.org/dev/peps/pep-0008/

e PyCharm automatically checks PEP8 compliance
e We will follow PEP8 in our assignments

self
@ t+1 o t+2 @
|

https://www.python.org/dev/peps/pep-0008/

Some PEPS8 basics pgthon

® Variables and functions should have

informative, lower case names:

e / word_count Xwdct
e / find_nouns() Xfindnn(), FindNouns()

® White space around operators:

count = previous + 1
X count=previous+1
@ Line length should be 79 characters maximum

self
(3

@ - o - @
[

Indentation and hierarchy

® Note that indentation is hierarchical:

if x>vy: # Not indented, always happens,
ifx>y*2: # Indented, happens if x>y
—print("it's a lot bigger!") # Indented twice!
else:

——print("it's a bit bigger") # Indented twice!
else:

—print("it's smaller")

For next time: NLTK practice

® Please work through the NLTK book (Python
3.X version), chapter 1, through the end of
section 1: (up to “A Closer Look at Python”)
e http://www.nltk.org/book/ch01.html
® We'll review some of the functions in class
later

e Note: for the dispersion_plot, you'll need to install
NumPy and Matplotlib using pip install numpy etc.

e No need to submit anything — but ask a TA or me for
help if you get stuck!

self
(3

@ - o - @
[

http://www.nltk.org/book/ch01.html

