
LING-362

Introduction to
Natural Language Processing

A Shallow Introduction to
Neural Language Models (ctd.)

Talk announcement

JHU, Center for Language and Speech
Processing seminar
• Friday, October 22 at 12:00pm ET

• https://wse.zoom.us/j/93327212503

• Reno Kriz – Towards a Practically Useful Text
Simplification System

https://wse.zoom.us/j/93327212503

Perplexity (PP)

Measured in general:

For a bigram model:

For a trigram model:

𝑃𝑃 𝑡𝑒𝑥𝑡 =
𝑁 1

𝑃(𝑤1…𝑤𝑁)

𝑃𝑃 𝑡𝑒𝑥𝑡 =
𝑁

ෑ

𝑖=1

𝑁
1

𝑃(𝑤𝑖|𝑤𝑖−1)

𝑃𝑃 𝑡𝑒𝑥𝑡 =
𝑁

ෑ

𝑖=1

𝑁
1

𝑃 𝑤𝑖 𝑤𝑖−1 𝑃(𝑤𝑖−1|𝑤𝑖−2)

Smoothing

To avoid multiplication by zero we need some
probability for OOV items

Common solutions:
• Laplace (a.k.a. “add 1”) smoothing (very skewed)

• Delta smoothing (“add 0.000….1”, a little skewed)

• Good-Turing Discounting (actual probabilities, based
on dataset properties)

Further reading

This was a brief introduction to ngram models:
• We can calculate probabilities for higher order models

(bigram, trigram, n-gram model)

• Our ngrams code could do better smoothing (Good-Turing)

• For n-grams, we can use shorter grams if longer ones are
OOV (a.k.a. backoff models), or incorporate weights from
all attested n-gram lengths (interpolation)

• Use variable length n-grams

➢ Recommended reading: Jurafsky & Martin (2017,
C4 – [at least] pages 1-16)

Contemporary language models

N-gram models were (and are) used for a long
time, give reasonable results with small datasets

But it’s 2021 and we need to talk about Neural
Networks…
• Reliance on machine learning to find best model
• Deep Learning architectures allow special conditions to be

learned for huge numbers of interacting features – not just
last 2 words

• Numerical representation of words allows defaulting to
‘similar’ words

• Memory based architectures let the computer ‘remember’
having seen something to trigger different behavior

• Use of attention weights to prioritize different cues

Contemporary language models

 Our discussion will be necessarily shallow
 Theoretical overview available in Jurafsky &

Martin (2017, C7)
 For more with practical examples in Python I

recommend working through:
• Hands-on Machine Learning with Scikit-Learn and

TensorFlow / A. Geron
• https://github.com/ageron/handson-ml

 For grad students especially: consider more
advanced ML courses (LING-504 in spring)

https://github.com/ageron/handson-ml

Feed forward networks

Basic neural networks:
• Take a bunch of inputs
• Activate ‘synapses’
• Propagate activation forward
• Fire some output

 Input and output can be
anything

Word example:
• Input: the
• Output: cat

8

I saw the cat on
the mat…

Back-propagation

How do they learn?
• Whenever the output is

wrong we apply a cost
to all activating inputs

• Propagate back in the
network

• Weights are modified

Word example:
• Input: the

• Output: the -> all active input links to the are penalized

9

Gradient descent

How can we find the best
weights?
• Make fewest mistakes
• Track derivative of cost

(loss function)
• If cost is getting less, all

is well
• If cost is getting higher,

correct in other direction,
until network converges
on a minimal error

10

Is this a glorified lookup table?

Although neural networks are very impressive,
they are only as good as input/output features
• Mapping words to words is not that amazing

• Getting from words to sentences is still a problem

• Many words will be OOV (out of vocabulary)

State of the art neural LMs use many tricks to
solve these problems

11

Vector space models / embeddings

Co-occurrence
frequencies (or
transformations
thereof) make a
vector space

Allows similarity
metrics for words
and documents

Models of meaning
based on neighboring
words

 0 2 4 6 8 10
 0

 2
 4

 6
 8

1
0

 0

 2

 4

 6

 8

10

navy

is
la

n
d

fl
o
ri
d
a

beach=[6,7,9]

ship=[4,8,5]

Applications

Projecting vectors to lower dimensions
• Reveal systematic relationships

• Word level similarity

Word2Vec

LING-504 ML for Linguistics / Amir Zeldes
14

Don’t count, predict! (see Baroni et al. 2014)

Image: mccormickml.com

Fine grained meaning

Vector Space Models can also be used to
represent word meaning:
• Approaches to Distributional Semantics (Harris 1954)
• The meaning of a word is its usage in the language

(Wittgenstein 1953)
• You shall know a word by the company it keeps (Firth 1957)

➢ We now have the data and computing power to
realize this

➢ Recommended advanced readings:
Baroni & Zamparelli 2010, Bruni et al. 2012,
Baroni et al. 2014

Word2Vec

 Implementation of distributional semantics
(Mikolov et al. 2013)
• Use a window of ±2 tokens

• Track co-occurrence of target word with its nearest
neighbors

• Vector space as a matrix of each word vs. its potential
neighbors:
 cactus – Christmas : close to no co-occurrences in window

 Queen – England: many co-occurrences

Skip-gram model

Train a neural network to use target word
vectors to predict context words
• Problem re-dressed as a binary classification task

• For some candidate word: is it a neighbor of our word
or not?
 Mix positive examples: Queen -> England? YES

 And negative ones: Queen -> curry? NO

• Alter the input vector representation as a result

Final vectors can be used to rank similarity

Is there one answer?

What would you expect the vector space to
tell you?
• Most similar word to: Android

• lemon is to orange as apple is to …?

• Which is different?
lemon orange apple cucumber

Try the demo here:
• https://rare-technologies.com/word2vec-tutorial/

https://rare-technologies.com/word2vec-tutorial/

Despite some weaknesses…

Word vectors or embeddings are a very
potent tool
• Relatively easy to get and use
• Unparalleled access to arbitrary word meaning
• Very good at getting similarity in some contexts
• State of the art for dealing with ‘OOV’ items

(Chen & Manning 2014) – as long as they’re not OOV in
the corpus used to train embeddings

• Allows context to compensate for missing terms (esp.
recent architectures, e.g. ELMo, BERT, XLNet – Peters
et al. 2018, Devlin et al. 2018, Yang et al. 2019)

Examples in Python

 Implementation in Gensim by Radim Řehůřek
> pip install scipy

> pip install gensim

• For Win 64 install scipy manually if needed from:
http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy
• Download scipy-1.7.1-cp39-cp39-win_amd64.whl

> pip install scipy-1.7.1-cp39-cp39-win_amd64.whl

• Or install Visual C++ 2015 Build Tools for compilation

http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy

Training a model – toy example
from gensim import models

sotu = "sotu_sent_per_line.txt"

with open(sotu,'r',encoding="utf8") as f:
plain_text = f.read()

sentences = plain_text.split("\n")

Training a model – toy example

tokenized = []

for sentence in sentences:
tokens = sentence.strip().lower().split(" ")
tokenized.append(tokens)

model = models.Word2Vec(tokenized, min_count=2, size=50)

print(model['america'])
-- [0.17634061 0.58502656 0.27098337 -0.17523931 -
0.24094008 -1.72932017 …]

Training a model – toy example

Is 'america' more similar to 'country' or 'goal'?
print(model.wv.similarity('america', 'country') >
model.similarity('america','goal'))

-- True

Let's find the most similar words to 'america'
print(model.wv.most_similar(positive=['america'],topn=3))

-- [('world', 0.7713112235069275), ('nation', 0.737435519695282), ('freedom', 0.72567957639691)]
-- [('world', 0.7955950498580933), ('freedom', 0.7540770173072815), ('nation', 0.73620635271072)]
-- [('nation', 0.85256427526474), ('best', 0.8303712606430054), ('future', 0.8137349486351013)
…

Training a model – toy example
What's a leader/king like?
print(model.wv.most_similar(positive=['leader','king'],topn=2))
-- [('elected', 0.9522648453712463)]
-- [('emperor', 0.8519768714904785)]

What if we're looking for words more distant from king?
print(model.wv.most_similar(positive=['american','leader'],
negative=['king'],topn=2))
-- [('freedom', 0.8039842247962952)]
-- [('human', 0.6412678956985474)]

Spot the odd one out
print(model.wv.doesnt_match(["france","germany","car","japan"]))
-- car

Much bigger in real life…
 These examples come from less than 2M tokens / 10 MB of

text – often rather bad!
 You can use ready-made examples from Google, Wikipedia,

…
• Google Word2Vec text is 3.6 GB, popular trimmed News version ~80MB
• GloVe 300D pre-trained embeddings ~1GB (Paddington et al.)
• BERT Base even larger, BERT Large has 345M parameters based on 3.5G

words, takes about 4 days on 16 cloud TPUs
(~about 100 mile car drive of electricity!)

 Not trained on the fly – used as saved trained models
 Typically held in memory, not loaded for each function call
 Still slow to load on a laptop, require high GPU RAM

Gensim lets you train your own medium sized models!

Beyond word similarity

Word embeddings are now one of the most
popular ways of representing text:
• Feed tools embeddings instead of words
• Probabilities based on vector dimensions – allows

reasonable behavior for OOV items
• Open to mathematical operations:
 Sentence meaning = avg. of word vectors?

 Classify sentence sentiment using vectors?

 Discourse segmentation via differences in sentence
meaning?

 …

Vectors in language models

 In a feed forward network we could do:

Jurafsky & Martin (2017)

Using memory

Recent neural models use memory based
architectures (Recurrent Neural Networks -
RNNs) or attention weights (Transformer)

Popular type: Long Short Term Memory
(LSTM) networks
• Cells don’t just get input ‘synapse’ weights, but also

activate themselves
• Allows cells to remember previous states
• In LSTMs: cells also learn when to forget what they’ve

seen

28

LSTM cell structure

29

Greff et al.
(2015)

What can LSTMs do?

 Intuitive example: character level sequence to
sequence modeling

Example – trained on Shakespeare:

30

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

What can LSTMs do?

 Intuitive example: character level sequence to
sequence modeling

Example – trained on Wikipedia:

31

Naturalism and decision for the majority of Arab countries' capitalide was grounded by
the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated with
Guangzham's sovereignty. His generals were the powerful ruler of the Portugal in the
[[Protestant Immineners]], which could be said to be directly in Cantonese
Communication, which followed a ceremony and set inspired prison, training. The
emperor travelled back to [[Antioch, Perth, October 25|21]] to note, the Kingdom of
Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known in
western [[Scotland]], near Italy to the conquest of India with the conflict. … Many
governments recognize the military housing of the [[Civil Liberalization and Infantry
Resolution 265 National Party in Hungary]], that is sympathetic to be to the [[Punjab
Resolution]] (PJS)[http://www.humah.yahoo.com/guardian.
cfm/7754800786d17551963s89.htm

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

/*

 * If this error is set, we will need anything right after

that BSD.

 */

static void action_new_function(struct s_stat_info *wb)

{

 unsigned long flags;

 int lel_idx_bit = e->edd, *sys & ~((unsigned long)

*FIRST_COMPAT);

 buf[0] = 0xFFFFFFFF & (bit << 4);

 min(inc, slist->bytes);

 printk(KERN_WARNING "Memory allocated %02x/%02x, "

 "original MLL instead\n"),

 min(min(multi_run - s->len, max) * num_data_in),

 frame_pos, sz + first_seg);

 return disassemble(info->pending_bh);

}

static void num_serial_settings(struct tty_struct *tty)

{

 if (tty == tty)

 disable_single_st_p(dev);

 pci_disable_spool(port);

 return 0;

}

What can LSTMs do?

Example – trained on Linux source code:

32

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

What are these cells learning?

33

Training your own

A relatively simple model works out of the box
using PyTorch:
• pip install pytorch

• https://github.com/pytorch/examples/tree/master/wo
rd_language_model

Other good libraries: Tensorflow, Keras

https://github.com/pytorch/examples/tree/master/word_language_model

Bonus fun

You can test AllenNLP’s neural LM here:
• https://demo.allennlp.org/next-token-lm

And you can chat with a neural network
trained on conversational pairs

Example:
• http://neuralconvo.huggingface.co/

• (also compare Microsoft’s TAY:
https://twitter.com/tayandyou)

35

https://demo.allennlp.org/next-token-lm
http://neuralconvo.huggingface.co/
https://twitter.com/tayandyou

Do neural LMs solve all problems?

Generated on
2021-10-18

More information

We will learn more about practical applications of
neural networks later

 Learning how neural models work in depth is
outside the scope of this course
• Jurafsky & Martin 2017, C7 is a good starting point
• Grad students: once you are confident in coding,

consider taking LING-504/COSC-576
 Further reading:

• Jurafsky & Martin (2017, C7)
• Hands-on Machine Learning with Scikit-Learn and

TensorFlow / A. Geron, 2019
(https://github.com/ageron/handson-ml)

37

https://github.com/ageron/handson-ml

A more abstract view of ngrams

What do language modes really ‘model’?
• Probabilities of individual words

• Probabilities of sequences of words

How is our language model using them?
• Get transitional possibilities probabilities

• What are the odds of moving from word X to word Y?

➢Next time: Markov Models

