
LING-362

Introduction to
Natural Language Processing

Dictionaries

xkcd.com

A word about new files and projects

You don’t have to create a new project (a bit
like a folder) ever time

You can create a New… > Python file
Different projects may have different pythons!

Key terms from Jurafsky/Martin

False positive / negative
• Accuracy -> precision

• Coverage -> recall

Some extra regex tricks: (caps for opposite)
• \b a 'word boundary'

• \d a digit

• \w a 'letter'

• \s whitespace

• x{n,m} specify n to m repetitions of previous

A neat site to test these

You can test your regex at:
• http://regexr.com/

Note the 'multiline' flag if you're using anchors
(^ and $)

http://regexr.com/

Using RegEx in Python

Specific groups
>>> import re
>>> match1 = re.search("b([aeiou])","brambular")
>>> match1.group()
'bu'
>>> match1.group(1) # return contents of first (…)
'u'

>>> re.sub(r'\(', '-LRB-', '(see')

'-LRB-see'

Regex group substitution

We can grab stuff out of matches with \1, \2..
Note the raw string (otherwise: \\1, \\2)

Let's duplicate the b[aeiou] syllables!
>> word = "bombastic"
>> word = re.sub(r'(b[aeiou])', r'\1\1', word)
>> word
'bobombabastic'

The number \1 always refers to the first part of
the pattern in brackets (\2 is the second brackets,
if available, etc.) – like group(1) etc.

Now tokenization for real

How does NLTK's tokenizer work?
• Actually you can almost read the code right now!

• Here's the important stuff

nltk.tokenize.treebank (adapted)

Note the use of def some_function(arg1,arg2,…):

import re

def tokenize(text, CONTRACTIONS2, CONTRACTIONS3):

#starting quotes
text = re.sub(r'^\"', r'``', text)
text = re.sub(r'(``)', r' \1 ', text)
text = re.sub(r'([(\[{<])"', r'\1 `` ', text)

nltk.tokenize.treebank (adapted)

#punctuation
text = re.sub(r'([:,])([^\d])', r' \1 \2', text)
text = re.sub(r'([:,])$', r' \1 ', text)
... 6 more

#parentheses, brackets, etc.
text = re.sub(r'([\]\[\(\)\{\}\<\>])', r' \1 ', text)
text = re.sub(r'--', r' -- ', text)

#add extra space to make things easier
text = " " + text + " "

nltk.tokenize.treebank (adapted)

Ending quotes
text = re.sub(r'"', " '' ", text)
…

Contractions
text = re.sub(r"([^'])('[sS]|'[mM]|'[dD]|') ", r"\1 \2 ", text)
text = re.sub(r"([^'])('ll|'LL|'re|'RE|'ve|'VE|n't|N'T) ", r"\1 \2",
text)

nltk.tokenize.treebank (adapted)

for regexp in CONTRACTIONS2:
text = re.sub(regexp, r' \1 \2 ', text)

for regexp in CONTRACTIONS3:
text = re.sub(regexp, r' \1 \2 ', text)

return text.split()

Not easy to follow, but…

This is actual working code for entry level
tokenization

 Just uses RegEx!!
Full code here:

http://www.nltk.org/_modules/nltk/tokenize/treebank.html

➢More professional options out there too
(notably Stanza, SpaCy, the TreeTagger
tokenizer in Perl or in Python here)

➢ Special tools for more challenging languages

http://www.nltk.org/_modules/nltk/tokenize/treebank.html
https://github.com/amir-zeldes/HebPipe/blob/master/lib/whitespace_tokenize.py

Exercise: Phone number scraper

Download phones.py from Canvas
• Fix the script so it finds all phone numbers in the text

• Some of the steps have been done for you

• Bonus question: can you print out all the numbers in a
uniform format?

Basic solution

lines = text_about_phones.split("\n")
phone_pattern = r'(\(?[0-9]+\)? ?)+'

for line in lines:
potential_match = re.search(phone_pattern,line)
if potential_match is not None:

phone_number = potential_match.group()
print(phone_number)

Phone number scraper

Basic scraper workflow:
• Get some text
• Go through it line by line:
 one option - make a list:

line_list = my_string.split("\n")
for line in line_list:

….

• Search for something with regex
• Collect capturing groups in a list for output

A word about files

Normally text_about_phones is from a file
To open a file, Python needs to know its name
The file’s name is a folder path, and can be:

• Absolute:
 /Users/Kim/nlp/phones.txt (Mac/Linux)
 C:\Users\Kim\Desktop\phones.txt (Windows)

• Relative: nlp/phones.txt (terminal is in /Users/Kim/)
• Just the file name: phones.txt - Python will look for the

file in the script’s directory

How can the user supply this information?

Building block – reading files

from argparse import ArgumentParser

parser = ArgumentParser()
parser.add_argument("file")

options = parser.parse_args()
phone_file = options.file

text_about_phones = open(phone_file).read()

…

Cleaning up the number

def clean_number(number_text):
"""
:param number_text: string containing a phone

number and special characters: (, +,)
:return: cleaned: string without special characters
"""

cleaned = re.sub(r"[\+ \(\)]","", number_text)
return cleaned

docstring

Cleaning up the number

if potential_match is not None:
phone_number = potential_match.group()
clean = clean_number(phone_number)
Let's not print less than 6 digits:

if len(clean) > 6:
print(clean)

How about recognizing the country?

A list of numbers is nice but…
 In some cases, lists are not enough:

• Suppose you want to know what country these
numbers come from

• You recognize the prefix using r'\+[0-9]+'

• It would be neat if we could 'look up' what country this
comes from

• We'd need a dictionary

Dictionaries

Dictionaries are like lists, but they don't map
from index position to value:
• shopping_list[1]

 Instead they map keys to values:
• grocery_type['broccoli']

'vegetable'

Dictionaries

To make a dictionary, we specify the mapping of
keys to values:
prefixes = {"+1":"US", "+972":"IL", "+63":"PH"}

We can also add some later:
prefixes["+52"] = "MX"

And access them:
some_pref = "+52"
country = prefixes[some_pref]

Exercise for after class

You can try adding functionality to the number
scraper (no need to submit):
• Start by creating a dictionary of some prefixes:
 prefixes = {}

 prefixes["52"] = "Mexico"

• Capture the +123 part of phone numbers if it appears

• If you captured a prefix for the current number, output the
country instead of the prefix, then the rest of the number:
 this_prefix = matcher2.group(1)

 print(prefixes[this_prefix] + " " + number_without_prefix)

'Mexico 015512345678'

How to check if you know the prefix?

This can cause an error if you've never seen
+345:
print(prefixes["345"])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: '345'

 Instead check first:
if "345" in prefixes:

print(prefixes["345"])

What else can we do with regex?

Regular expressions are a very powerful way of
defining and manipulating patterns of strings

For some applications regex can get you very
far

 Is regex enough to make a talking computer?
What would constitute one in your opinion?

The Turing Test

Test devised by Alan Turing (1950)
• See whether computers can communicate
• By proxy whether they are intelligent

Original test:
• Computer substitutes participant in the "imitation

game", in which a man/woman try to fool a judge
about their gender

Revised test:
• Person and computer try to convince judge that they

are a human

Turing Test

The best known implementation is the
Loebner Prize (https://aisb.org.uk/new_site/?page_id=2)

A little like a mini-nobel prize for NLG/dialogue
systems
• Running since 1990 (last year on hiatus)

• Small prizes for 'best' program

• Larger one time prizes:
 $25,000: judges can't distinguish program from human

 $100,000: same including A/V input

https://aisb.org.uk/new_site/?page_id=2

Spot the not (blue is human)
- Hello, my name is Andrew. What’s your name?

- Hello Andrew nice to meet you, my name is Amos
- Hello there. Your name is Andrew. My name is Millie.

- Why don’t you tell me a little more about yourself ?
- No, I am rather shy
- My name is Millie and I am a human volunteer for the Loebner Prize. I live in Leeds and

am single. I am interested in AI but don’t have a chatbot myself. What about you?
- I am a researcher in Artificial Intelligence at Goldsmiths University, do you

know what that is?
- Of course, it is designation title is self explanatory!
- Do you enjoy your research? I am a volunteer who has agreed to help with a Turing test.

- Will you tell me about your dreams?
- Sure, what would you like to know?
- I dream that I will pass my university exams.

- Can you rephrase that?
- Yes I will, what would interest you about my dreams?
- No, not really. What don’t you understand?

Spot the not (blue is human)

- What is my occupation?
- You are one for changing topics. Aren’t you a researcher?
- Well you said your job was RESEARCHER.

- Can you tell me about a film you haven’t seen?
- If I haven’t seen it, how would I tell you about it?
- you have not seen = Are you asking about my have not

seen?
- What do you think of Trump?

- He will make a nice addition to the zoo
- I read that over 50% were either concerned or scared

about Donald Trump being President. if that’s the case,
why did they vote for him?

Having conversations with a computer

Eliza was the first 'chatbot' to convince some
humans of its intelligence
• Basic 'Rogerian' therapist (What do YOU think about

that?)

• Some basic linguistic awareness – recognize user
expressions, conjugate and reflect them back

• Let's talk to Eliza and figure out what she knows and
doesn't know about speaking English

Having conversations with a computer

You can try this at home too:
• Download eliza_simplified.py from Canvas

• In the terminal console run:
> python eliza_simplified.py

Eliza: sample conversation

Therapist

Talk to the program by typing in plain English, using normal
upper-and lower-case letters and punctuation. Enter "quit" when
done.
==
Hello. How are you feeling today?
>I'm a little tired.
Why do you think you're a little tired?
>I probably should have gone to bed earlier.
Why do you say that you probably should have gone to bed
earlier?
>I think I don't sleep enough during the week.
Do you doubt you don't sleep enough during the week?
>No, definitely.

How does Eliza work?

Eliza is looking for certain patterns:
#--
pats, the main response table. Each element of the list is a
two-element list; the first is a regexp, and the second is a
list of possible responses, with group-macros labelled as %%
#--
pats = [
[r'I need (.*)',
[r"Why do you need %%?",
r"Would it really help you to get %%?",
r"Are you sure you need %%?"]],

...

Reimplementation of Weizenbaum's code by Joe Strout, Jeff Epler, Jez Higgins in Python

How does Eliza work?

 Use certain substitutions:
#--
reflections, a translation table used to convert things you say
into things the computer says back, e.g. "I am" --> "you are"
#--
reflections = {

"am" : "are",
"was" : "were",
"i" : "you",
"i'd" : "you would",
"i've" : "you have",
"i'll" : "you will",

…
}

Reimplementation of Weizenbaum's code by Joe Strout, Jeff Epler, Jez Higgins in Python

How does Eliza work?
#--
command_interface
#--
print("Therapist\n---------")
print("Talk to the program by typing in plain English, using normal upper-")
print('and lower-case letters and punctuation. Enter "quit" when done.')
print('='*72)
print("Hello. How are you feeling today?")
s = ""

Reimplementation of Weizenbaum's code by Joe Strout, Jeff Epler, Jez Higgins in Python

How does Eliza work?
Make an empty dictionary called mappings
mappings = {}
for pattern in pats: # Go through patterns

find = pattern[0] # The first item in each pattern is the regex to find
replacements = pattern[1] # The second item is itself a list of possible replacements
mappings[find] = replacements

while s != "quit": # While loop is a bit like a for loop
s = input(">")
if len(s) < 1:

s = "quit"
print(s)

s = re.sub(r"[\.!]$", "", s) # Remove trailing punctuation
response = respond(s, mappings, reflections)
print(response)

Reimplementation of Weizenbaum's code by Joe Strout, Jeff Epler, Jez Higgins in Python

How can we improve on Eliza?

Try to make Eliza produce a blatant error:
• What kind of error is it?
 Morphology
 Syntax

 Semantics
 Pragmatics

 Memory?

• How can we solve it?
 More patterns
 More reflections

 Completely new mechanisms

Homework

Please do the next assignment to practice
RegEx in Canvas (pig_latin.py)

Due on Monday

➢Instructions are in the script file+Canvas assignment

