
LING-362

Introduction to
Natural Language Processing

Topic Modelling I

Parsing – review

CFG parsers work by constructing a tree of
phrases – grammars are bi-directional:
• Top down: LHS > RHS
• Bottom up: LHS < RHS

Algorithm for possible (binary) trees: CKY
• Try to identify places to split the input
• Do two things show up as a RHS somewhere?
• Use dynamic programming: keep a table of all possible

pairs, look up only once
• Requires grammars in CNF

Parsing – review

Some big problems in rule-based parsing:
• Data sparseness:
 Some rules in Treebank very rare (17,000+ rules from PTB!)

 Presumably many others are unattested

• Ambiguity:
 Many sentences have enormous number of possible parses

PCFGs:
• Use probabilities to disambiguate possible parses

• Probabilities for decompositions of each LHS

Parsing – review

Context sensitivity and lexicalized parsing:
• Parsers always choose most frequent decomposition –

rare readings can become impossible

• Sometimes probability differs in syntactic context
(object/subject NP, certain words)
 Use parent annotation (NP^S = subject NP)

 Use lexicalized head percolation (NP[PRP,me])

 Optimize label splitting / merging

Information retrieval and NLP

So far we’ve been looking at forms
• Morphological affixes

• Parts of speech

• Sentence structure – colorless green ideas…

Today we take a look at broader meanings
• What kind of information are you looking for?

• What is a document about?

• Do these pieces of text mean something similar?

From words to documents

Words and sentences are not the only data
points for processing in NLP

Some processing methods target documents
• Each document is a data point

• Try to extract certain properties from each data point

• Common applications:
 Information retrieval

 Document similarity

 Topic modelling

Topic Modelling

Trying to figure out topics in documents
• Approaches from automatic text summarization:
 Extract snippets – this sentence is the most pertinent

because…
(may require coreference resolution, templates, other types
of pre-processing…)

 Give more 'semantic' answers – return single phrase answer
via key word extraction (TF/IDF, semantic parsing…)

extractive

Topic Modelling

Trying to figure out topics in documents
• Similarity based approaches:
 This document is about Middle East politics because it's

similar to other stories in this rubric… (→ supervised)

 Or: we don't know what these documents are about but –
they're similar to each other (→ unsupervised)

 If we obtain 10 good clusters for 10,000
documents, naming those clusters may be a
small problem ☺

What documents are about

Documents can be seen as sequences of
tokens and other features:
• We know how to tokenize plain text

• Tokens can carry hidden features (POS tags and more)

• Groups of tokens can form higher structures (trees)

Which of these are most indicative of
document meaning?

How do we know what this is about?

The U.S. Navy and Coast Guard rescued three mariners from a remote,
uninhabited Pacific island Thursday after a Navy plane spotted palm
fronds spelling the word "help" on the sand.

The castaways who constructed the makeshift S.O.S. had been
stranded on Fanadik Island for three days, according to the Coast
Guard. This island lies about 2,600 miles southwest of Honolulu.

Some words are “not interesting”

A simple approach would be to only look at
‘content words’ (nouns and verbs?)
• But POS tags like NN don’t guarantee content-y-ness
 A/DT lot/NN of/IN …

 Take/VB for/IN example/NN …

More often, stop lists are used:
• Manual curation and/or top frequencies

• if, in, take, do, lot, make, while, to …

What would you consider a ‘stop word’?

Try crossing out words that you think are not
useful for establishing what the text on the
sheet is about
• Can we agree on the stop words?

• Can you still understand the text with the words
crossed out?

The U.S. Navy and Coast Guard rescued three
mariners from a remote, uninhabited Pacific
island Thursday after a Navy plane spotted
palm fronds spelling the word "help" on the
sand.

Just ‘content words’

The U.S. Navy and Coast Guard rescued three mariners from a remote,
uninhabited Pacific island Thursday after a Navy plane spotted palm
fronds spelling the word "help" on the sand.

The castaways who constructed the makeshift S.O.S. had been
stranded on Fanadik Island for three days, according to the Coast
Guard. This island lies about 2,600 miles southwest of Honolulu.

But what is it about?

So the article is not about the word ‘the’
• But is it about the coast guard?

• About Honolulu?

• About palm fronds?

But what is it about?

Answer 1: use…
 Frequencies!

• Island 3
• Navy 2
• Coast 2
• Guard 2
• palm 1
• fronds 1
• castaways 1
• Honolulu 1
• Fanadik 1
• stranded 1

We’d like some
things to go together

MWEs, lemmatization & stemming

Some words go together and form a unit:
• Multiword Expressions: Coast Guard, as well

And some words are different forms of the
same lexical item:
• rescue, rescued → lemma: rescue

And some words share the same stem:
• rescue, rescued, rescuer → stem: rescue

How to lemmatize and stem
 Very many stemmers out there
 Porter and Snowball are freely available classics:

from nltk import word_tokenize
from nltk.stem import snowball

text = "Instructive instructions are less useful than exemplifying
examples"

tokens = word_tokenize(text)
my_stemmer = snowball.SnowballStemmer("english")

for token in tokens:
print(my_stemmer.stem(token))

How to lemmatize and stem

instruct
instruct
are
less
use
than
exemplifi
exampl

How to lemmatize and stem

Lemmatization is often more reliable, but
collapses fewer forms

We can use the nltk WordNetLemmatizer
(not great but works mostly)

from nltk.stem import WordNetLemmatizer
from nltk import pos_tag, word_tokenize
from nltk.corpus import wordnet

How to lemmatize and stem
text = "Instructive instructions are less useful than
exemplifying examples"
tokens = word_tokenize(text)
tagged = pos_tag(tokens)

my_lemmatizer = WordNetLemmatizer()

for token, tag in tagged:
wordnet_tag = get_wordnet_pos(tag)
if wordnet_tag is not None:

print(token + "\t" +tag + "\t" +
my_lemmatizer.lemmatize(token,wordnet_tag))

else:
print(token + "\t" +tag + "\t" + token)

How to lemmatize and stem

def get_wordnet_pos(PTB_tag):
if PTB_tag.startswith('J'):

return wordnet.ADJ
elif PTB_tag.startswith('V'):

return wordnet.VERB
elif PTB_tag.startswith('N'):

return wordnet.NOUN
elif PTB_tag.startswith('R'):

return wordnet.ADV
else: # indeclinable word

return None

Collapsed frequencies

Answer 2: use…
Collapsed frequencies!

• Island 3
• Coast Guard 2
• Navy 1
• U.S. Navy 1
• palm frond 1
• castaway 1
• Honolulu 1
• Fanadik 1
• strand 1

We have better
grouping now… But
what is this
document like?

Is the following document similar?

One man went from camper to castaway in a turn of the tide.

An Illinois man who drifted in a dinghy from the Florida Keys
to a desolate island in the Bahamas is lucky to be alive after
six days spent on the open ocean and then marooned,
according the U.S. Coast Guard who rescued him Monday
night.

Larry Sutterfield, 39, planned to go camping when he took his
dinghy under the Seven Mile Bridge in Marathon, Fla. But the
current took him toward the Florida Straits and then to a small
spit of land along the Cay Sal Bank in the Bahamas, The Sun-
Sentinel reported.

Is the following document similar?

• Island 3

• Coast Guard 2

• Navy 1

• U.S. Navy 1

• palm frond 1

• castaway 1

• Honolulu 1

• Fanadik 1

• strand 1

• dinghy 2

• Florida 2

• Bahama 2

• man 2

• U.S. 1

• Coast Guard 1

• rescue 1

• island 1

• maroon 1

Bag of words model

We’re basically treating documents as
frequency lists
• No information about word order

• Not all documents have all words – so lots of 0's

navy: 0
island: 3
maroon: 0
U.S.: 5
Florida: 0

navy: 3
island: 2
maroon: 4
U.S.: 1
Florida: 1

navy: 3
island: 0
maroon: 0
U.S.: 7
Florida: 7

Can we build our own BoW model?

Think about the tagging assignment’s common
noun frequency counts

What kind of data structure would you get if
you collected frequencies for the same words
for multiple input documents?

Bags of words as vectors in a matrix

doc1 doc2 doc3

navy 0 3 3

Island 3 2 0

maroon 0 4 0

U.S. 5 1 7

Florida 0 1 7

Words in Vector Space

 If all we care about is frequency similarity for
island and florida:
• Measure similarity as

Euclidean distance

• Each feature is a
coordinate

=

−
N

i

ii ba
1

2)(

0 2 4 6 8 10

0
2

4
6

8
1
0

island

fl
o
ri
d
a

doc3=[7,5]

doc2=[1,4]
distance

How to measure distance?

We can add a third dimension (recall embeddings)
Adding more?

• Hard to visualize
• Distance still calculable
• But should each word

be a dimension?

Problems:
• Document length
• Scaling
• Term specificity
• Collinearity

 0 2 4 6 8 10

 0
 2

 4
 6

 8
1
0

 0

 2

 4

 6

 8

10

island

fl
o
ri
d
a

n
a
v
y

doc3=[1,4,3]

doc2=[7,5,0]

Document length

Distance might seem like a good idea but…
• Longer documents have more words
 A short document might not mention the U.S. Coast Guard

often

 But the fact that it does so in just 100 words seems
significant

• Still, the angle
remains the same

➢Normalize length

➢Cosine similarity
 0 10 20 30 40 50

 0
1
0

2
0

3
0

4
0

5
0

 0

10

20

30

40

50

island

fl
o
ri
d
a

n
a
v
y

doc3=[1,4,3]
doc2=[7,5,0]

 0 2 4 6 8 10

 0
 2

 4
 6

 8
1
0

 0

 2

 4

 6

 8

10

island

fl
o
ri
d
a

n
a
v
y

doc3=[1,4,3]

doc2=[7,5,0]

10x navy …

Cosine similarity

Works much like cosine in
trigonometry:
• 1 -> zero angle (same)

• 0 -> orthogonal (90°)

• -1 -> opposite (180°)

[image: Wikimedia]

Cosine similarity

But still works for n-dimensional vectors!

cos 𝜃 =
𝐴 ∙ 𝐵

𝐴 𝐵

• Dot product of two vectors divided by the product of
their magnitudes
 Dot product: multiply vectors cell-wise and sum

 Magnitude: 𝑋 = 𝑥1
2 + 𝑥2

2. . +𝑥𝑛
2

Scaling

Even with cosine similarity, the proportion of
word frequencies gives the direction
• If word 1 appears once and word 2 appear twice:
 proportion 1:2

• Now consider words appearing 10 vs. 20 times:
 proportion 1:2

➢ Is a word appearing twice really twice as
important as one appearing once?

➢ Is it the same for 10 vs. 20?

Scaling

A common solution is to take log frequencies
• E.g. log base 10

• Difference between
1 and 10 same as
difference between
10 and 100,
100 and 1000,
…

from math import log10

print(log10(5))
0.6 0.8 1.0 1.2 1.4

1
5

1
0

5
0

5
0
0

lo
g

1

10

100

1000

Term specificity

A more fundamental problem with VSMs is
that we have different ideas about what’s
important
• Very frequent (non-stop) word is important?
• Suppose our document contains:
 insurance 10

 try 10

 story 10

• What is it about?
• How can we tell which is more important?

Collection frequency

Some terms might generally be very frequent
• Appearance less surprising – assign less importance

• Use Collection Frequencies (sum over all documents,
adapted NYT example from Manning & Schütze 1999)
 insurance 10440

 try 10422

 story 23591 (less surprising)

• How are insurance and try still different?

Document frequency

Even with equal collection frequency, terms
appear in different amounts of documents

term collection document

 insurance 10 10440 3997

 try 10 10422 8760

 story 10 23591 10897

So if we know all this

Answer 3: use…
Collapsed collection and document frequencies!

• Island 3
• Coast Guard 2
• Navy 1
• U.S. Navy 1
• palm frond 1
• castaway 1
• Honolulu 1
• Fanadik 1
• Strand 1

Is this as much about
Honolulu as it is
about Fanadik?

Just one number

To get just one number representing a term’s
relevance in a document:
• Use log term frequency (TF): log(TF)

• Weight it by proportion of documents with this term
(DF) in an N document collection

But we want inverse weighting – high
document count is bad, so:
• Inverse document frequency (IDF): log(N/DF)

TF-IDF

Most common weight function in Information
Retrieval:
• Weight for term i in document j (or 0 if unattested):

weight 𝑖, 𝑗 = 1 + log 𝑇𝐹𝑖,𝑗 ∙ log
𝑁

𝐷𝐹𝑖

• The IDF weighting for a unique term is maximal: log(N)

• For a term appearing in all documents: log(1) = 0

