LING-362

Introduction to
Natural Language Processing

Topic Modelling

® From form to meaning!
® Today:

e More on documents as data points
e TF-IDF
e Latent Dirichlet Allocation (LDA)

Basic MWE merging — multiword.py

from nltk.tokenize import MWETokenizer
from nltk import FregDist

mwe_list = [('palm’, 'fronds'), ('coast’, 'guard')]
mwe = MWETokenizer(mwe_list, separator="_")

tokens = word_tokenize("The coast guard saw palm fronds.")
mwe_tokenized = mwe.tokenize(tokens)

for term, freq in FregDist(mwe_tokenized).most_common(10):
print(term + "\t" + str(freq))

s€
[y
O SmOu O

[

Pretrained models

® General NLP pipelines: Spacy, CoreNLP, gensim...

® Or try Nathan Schneider’s MWE system:

e https://github.com/nschneid/pysupersensetagger
® Trained on STREUSLE corpus:
e https://github.com/nert-nlp/streusle

® You can also try writing your own
(hint: this can be formulated as a BIO sequence
labeling task)

self
(3

@ - o - @
[

https://github.com/nschneid/pysupersensetagger
https://github.com/nert-nlp/streusle

Collapsed frequencies: ‘palm fronds’

@CO”apSEd frequenCies: Should we lower case?
e island
e coast_guard
* Navy
* U.S._navy
e palm_frond
e castaway
e Honolulu

e Fanadik
e strand

self
@ t+1 o t+2
| ®

Are MWESs sometimes
harmful?

RP R PR R R R NNW

How to measure distance?

® We can measure distance in n dimensions

® Problems:
e Document length
e Scaling
e Term specificity g
e Collinearity

navy

n 9 o~ 246
d(p’Q):\jZ(%_p"') T i

island

Document length

® Distance might seem like a good idea but...

e Longer documents have more words
Short document may not mention U.S. Coast Guard often

But the fact that it does so in just 100 words seems
significant

e Still, the angle

) 10x navy ...
remains the same

»Normalize length

»>Cosine similarity |, -

@ - o - @

[

Cosine similarity

® Measure the angle between vectors:

A-B
1AIlIB]

cos @ =

e Dot product of two vectors divided by the product of
their magnitudes
Dot product: multiply vectors cell-wise and sum

Magnitude: [|X|| = /xZ + x2.. +x2

self
@ t+1 o t+2 @
|

Scaling

® With cosine similarity, the proportion of word
frequencies gives the direction

e If word 1 appears once and word 2 appear twice:
proportion 1:2

 Now consider words appearing 10 vs. 20 times:
proportion 1:2

» But is a word appearing twice really twice as
important as one appearing once?
» Is it the same for 10 vs. 207?

self
@ t+1 o t+2 @
=

Scaling

® A common solution is to take log frequencies
e E.g. log base 10
 Difference between

©1000

1 and 10 same as

difference between
10 and 100, ’ > 100
100 and 1000,

500

log
50

© 10

5 10

from math import log10

print(log10(5)) oL | e —

0.6 0.8 1.0 1.2
self
) g
@0

Term specificity

® A more fundamental problem with VSMs is
that we have different ideas about what’s
Important

e Very frequent (non-stop) word is important?
e Suppose our document contains:

insurance 10
try 10
story 10

e What is it about?
 How can we tell which is more important?

se
@ 1 o 2 @
e

Collection frequency

® Some terms might generally be very frequent

e Appearance less surprising — assign less importance

e Use Collection Frequencies (sum over all documents,
adapted NYT example from Manning & Schitze 1999)

insurance 10440
try 10422
story 23591 (less surprising)

e How are insurance and try still different?

Document frequency

® Even with equal collection frequency, terms
appear in different amounts of documents

term collection document
insurance 10 10440 3997
try 10 10422 8760
story 10 23591 10897

Can we combine these
somehow?

Just one number

® To get just one number representing a term’s

relevance in a document:

e Use log term frequency (TF): log(TF)

e Weight it by proportion of documents with this term
(DF) in an N document collection

® But we want inverse weighting — high

document count is bad, so:
e Inverse document frequency (IDF): log(N/DF)

TE-IDF

® Most common weight function in Information
Retrieval:
e Weight for termiin documentj (or O if unattested):

N
weight(i, /) = (1 + log(TFi,j)) - log (DF-)
l

e The IDF weighting for a unique term is maximal: log(N)
e For a term appearing in all documents: log(1) =0

® TF-IDF weights can be applied to frequencies
in a BOW model

self
@ t+1 o t+2 @
=

Classitying documents

® TF-IDF is great for finding distinctive terms
®But it doesn’t tell us the best way to segment a

collection into topics

e We want to identify the most different kinds of
documents

e \Words that characterize these ‘kinds’

e Degree of belonging to each of n topics, for each
document (multiple topics possible)

self
(3

@ - o - @
[

An approach to automatic “topics”

® Latent Dirichlet Allocation (LDA) assumes:

e Words can have their own prior probabilities in each
possible topic

e Assume that any set of documents we see is an
example of the topic-based probabilities to realize
each word

e Each document is a mixture of the topics that
generated it

LDA - a caricature

®Suppose we have 10 topics with different
probabilities for the same words:
e Mary cooked up a new schematic

® Probably these words were generated

according to these topics: Legend:

. Religi
» Mary cooked up a new schematic clslon
Cooking

Engineering
P(Mary|religion) > P(Mary| cooking) > ...

self
@ t+1 o t+2 @
'

The 'generative story’

® According to LDA, documents are born like this

e For every document, some random mix of topics is
selected: 20% politics, 31% religion ...

e Once those are known, each position in the document
is generated by some topic: randomly, word 1 gets to
come from the 'religion’ topic

e Now a specific word is picked at random, based on its
probability in that topic — very likely to be 'church’,
unlikely to be 'pizza' (but possible)

LDA - more formally

Topic distr. for each Initial prior for a word
document being in a topic

Words that
get chosen

Initial prior for each

topic beinginad
opic being in a doc e

document

Topic generating each
word in document

Inferring latent variables

® Now the problem:

 given the words, some idea of how many topics we
might have and what prior distributions are like
(incl. likelihood of each word)...

e Infer the latent variables that generated each
document

® Specifically — we want &i for each document i

e Because if we know what words come from which
topic with what likelihood...

e We can get the topic mixture that generated that
document with the highest likelihood

self
@ t+1 o t+2 @
=

Let's do it!

® There are several methods to infer Ji
e Often: Gibbs sampling (similar to MCMC)

e Gamble on the parameters, see if you get something like
our collection, if not change parameters

e Initially assume each word comes from a random topic —
get J, a and 6

e Run through data again — is this result likely? -> change
® We can't get into these methods in depth in this
course
® But we can use some libraries to do this for us

» Further reading: Blei et al. (2003), Grus (2015)

self
@ t+1 o t+2 @
=

Library lda

@ First we install the Ida library from the

command line:
> pip install Ida

® Code in Ida_example.py

Imports

Example adapted from Chris Strelioff
from numpy import argsort
import Ida.datasets

Example data

Get some actual document data

This is a two dimensional table of

documents in each row, word frequencies in each column
reuters_data = lda.datasets.load_reuters()

Get a list of document titles to help interpret results —
corresponds to each row in the table
reuters_titles = Ida.datasets.load _reuters_titles()

Get the vocabulary in the documents - corresponds to each
column in the table

reuters_vocab = |da.datasets.load_reuters_vocab()

f

Testing the data

print("We are classifying " + str(len(reuters_titles)) + " documents")
print("with " + str(len(reuters_vocab)) + " distinct words.")

-- We are classifying 395 documents
-- with 4258 distinct words.

print("For example the title of document 5 is: " + reuters_titles[5])

-- For example the title of document 5 is:
-- 5 INDIA: Mother Teresa's condition unchanged, thousands pray. CALCUTTA

print("Word 4 is: " + reuters_vocab[4])
print("Its frequency in document 5 is: " + str(reuters_data[5][4]))
-- Word 4 is: mother Its frequency in document 5 is: 24

y

Fitting the model

lda_model = lda.LDA(n_topics=20, n_iter=500)
lda_model.fit(reuters_data)

topic_word_mapping = lda_model.topic_word__

Let's check the probability of 'mother' (word 4) in topic 3
Notice that numpy n-dimensional arrays use

commas between dimensions (like R)

print("The probability of word 4 in topic 3 is:")
print(topic_word _mapping[3,4])

-- The probability of word 4 in topic 3 is:
-- 2.70009018301e-06

self
@ t+1 o 12

Getting top words for each topic

print("\nThe top 5 words in each topic:\n" + "="*50)

for topic in topic_word_mapping:

words_in_topic =[]
sorted_indices = list(argsort(topic))[::-1]
foriinrange(5):
index = sorted_indices]i]
words_in_topic.append(reuters_vocab[index])

print(", ".join(words_in_topic))

/
| /

Output

The top 5 words in each topic:

world, million, against, group, court
harriman, clinton, u.s, ambassador, paris
pope, vatican, surgery, hospital, rome
died, king, service, funeral, michael
russian, russia, soviet, moscow, communist

@ - o - @

Getting the best topic per document

doc_topic_mapping = lda_model.doc_topic_

for nin range(10):

best_topic = doc_topic_mapping[n].argmax()
print("doc" + str(n) + ", titled: " + reuters_titles[n])
print("Best topic: " + best_topic)

Output

docO, titled: 0 UK: Prince Charles spearheads British royal revolution. LONDON 1996-08-20
Best topic: 10

docl, titled: 1 GERMANY: Historic Dresden church rising from WW?2 ashes. DRESDEN, Germany
1996-08-21
Best topic: 4

doc2, titled: 2 INDIA: Mother Teresa's condition said still unstable. CALCUTTA 1996-08-23
Best topic: 15

doc3, titled: 3 UK: Palace warns British weekly over Charles pictures. LONDON 1996-08-25
Best topic: 10

doc4, titled: 4 INDIA: Mother Teresa, slightly stronger, blesses nuns. CALCUTTA 1996-08-25
Best topic: 15

doc5, titled: 5 INDIA: Mother Teresa's condition unchanged, thousands pray. CALCUTTA 1996-08-
Best topic: 15

Plotting word distributions

import matplotlib.pyplot as pplt

figure_container, my_plot_axes = pplt.subplots(2, 1)

my_plot_axes[0].stem(topic_word _mapping[4,:])

my_plot_axes[1].stem(topic_word mapping[15,:])

pplt.show()

Reminder: all words are in all topics!

500 1000 1500 2000 2500 3000 3500 4000 45

2000 2500 3000 3500 4000 4500

What else can we read?

@ If you want more practice, work through the
NLTK book, chapter 8, up to section 5

e Review of constituent parsing
e Some additional ideas about sentence structure

® What to read next?

e After the final: | recommend Chapter 6 — supervised
text classification with some more advanced Python

self
(3

@ - o - @
[

