
LING-362

Introduction to
Natural Language Processing

Python & NLTK basics II

Questions from last time

Quick review

Math:
• 4 + 3

• 5 ** 2

Variable type conversions:
• int(4.0) → 4

• float(4) → 4.0

• str(4) → "4"

Quick review

 Strings:
• "hello" + " " + "world"
'hello world'
• "bye" * 2
'byebye'
• "bye"[0]
'b'
• "bye"[-1]
'e'
• "bye"[0:-1]
'by'

Quick review

Booleans:
• 6 > 5

True

• 6 == 5

False

NLTK – a quick taste
 With the resources installed, we can play with some texts:

>>> from nltk.book import *
*** Introductory Examples for the NLTK Book ***
Loading text1, ..., text9 and sent1, ..., sent9
Type the name of the text or sentence to view it.
Type: 'texts()' or 'sents()' to list the materials.
text1: Moby Dick by Herman Melville 1851
text2: Sense and Sensibility by Jane Austen 1811
text3: The Book of Genesis
text4: Inaugural Address Corpus
text5: Chat Corpus
text6: Monty Python and the Holy Grail
text7: Wall Street Journal
text8: Personals Corpus
text9: The Man Who Was Thursday by G . K . Chesterton 1908

Imports

You can import an installed library like this:
>>> import nltk # Now we can access the nltk object

>>> nltk.__version__ # Get the __version__ attribute

'3.6.2'

We can also import contents of specific
submodules:
>>> from nltk.book import * # all contents of nltk.book

Imports

Or even specific objects and functions:
>>> from nltk.book import text1

>>> print(text1.name)

'Moby Dick by Herman Melville 1851'

>>> print(text2.name)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'text2' is not defined

NLTK – a quick taste

What are these texts we’re importing?
• Objects of the type or Class Text

• A 'customized' data type – we will learn a lot about
these

• Objects represent encapsulated, somewhat
autonomous pieces of code with specified functionality

Objects have:
• Properties or attributes text1.name

• Functions or methods text1.concordance("ship")

Methods and arguments
>>> text1.concordance("harpoon",10,10)

Displaying 10 of 76 matches:

risk a harpoon

And that harpoon

a tall harpoon

…

>>> text1.concordance("harpoon",lines=100)

Displaying 76 of 76 matches:

hen they were nigh enough to risk a harpoon from the bowsprit ? Now having a ni

n a sunrise and a sunset . And that harpoon -- so like a corkscrew now -- was f

over the fire - place , and a tall harpoon standing at the head of the bed . B

First notions about OOP

A major line of thought for Object Oriented
Programming (OOP)
• Objects are encapsulated
• They do their job and expose methods
• We don't know (and don't want to know) how

Advantages:
• Others can import our objects without studying our

code
• Possible to improve our objects without altering their

interface to the outside

Procedural vs. OOP

Our Greek perfect program is an example of a
procedural program (procedural ≠ OOP)
• Functions or 'procedures' run in sequence

• Not bundled into opaque 'objects'

What kind of object would we use to contain
our Greek verb?
• What properties would the object have?

• How would we get the perfect / present form?

• What else could it do?

Procedural vs. OOP

Bonus exercise: (intermediate pythonistas!)
• Look at greek_perfect_object.py in Canvas

This is a toy implementation of a GreekVerb
class (a custom data type for Greek verbs!)
• There are a lot of things here we haven’t learned yet…

• Try stepping through the code in the debugger

Point for further thinking:
• This is a lot more code than greek.py

• Why is this useful? Is it worth it?

Another example: .similar(word)

The Class Text has a similar function with the
signature: .similar(word, num=20)

 It gives you num distributionally similar words
• How?
• Who cares: The Text Class takes care of this for us
• If we have a better method to do this next week, we'll

release a new version of the Text Class

➢ This is nice and correct in principle… but stay
vigilant!

Another example: .similar(word)

>>> text1.similar("boat",num=4)
whale ship head sea
>>> text1.similar("Ahab",num=4)
it he that queequeg
>>> text1.similar("crew",num=4)
whale ship head boat
>>> text1.similar("harpoon",num=4)
whale boat ship sea

A (slightly) more serious program

For our next exercise, we will build a program
to check whether our input is a palindrome:
• dud

• kayak

Or not:
• bud

• magic

Palindrome checker

Thinking about input and output:
• IN: a string of characters

• OUT:
 An answer in English (String)

 True or False (Boolean)

Some starter code - if

test = "kayak"

Ideally we'd want something like this:
if test_is_a_palindrome:

print("The input '" + test + "' is a palindrome")
else:

print("The input '" + test + "' is not a palindrome")

We need to learn more…

A word about indentation

To know what to do 'only if X' Python uses
indentation:
x = 5 # Not indented, always do this part
y = user_input # Also not indented
if x > y: # Not indented, since this check always happens

print("it's bigger!") # This is indented – only do if x>y

 In other words, indentation determines the
scope of the if statement

If, else and elif

You can also test multiple alternatives:

x = 5
y = user_input
if x > y:

print("it's bigger!")

elif x < y:
print("it's smaller!")

else:
print("it's the same!")

Quick exercise – imagine it’s snowing!

Hurray! Snow!!
What will this code print?

snow_inches = 40 # Current snow level
campus_open_max = 55 # Level at which campus closes
tomorrow_min = 10 # Minimum projected snowfall tomorrow
tomorrow_max = 20 # Maximum project snowfall tomorrow

if snow_inches + tomorrow_max < campus_open_max:
print("campus will definitely be open")

elif snow_inches + tomorrow_min < campus_open_max:
print("campus might be open")

else:
print("campus will definitely be closed")

Another word about indentation

Python accepts two ways of indenting:
• Initial spaces, often 4 (sometimes 2 are used)

• Tabs

PEP8 recommends 4 spaces
But many developers use tabs (esp. outside US)
 I will accept either, but no mixing!

➢What is PEP?

Conventions and names

 It is a good idea to use informative names for
variables and functions

To document your code inside your scripts
• Helps others work with your code

• Helps you to remember what you were doing

• Allows creation of automatic documentation

High quality code is easy to maintain – but
what conventions should we use?

PEP

Python is developed using the Python
Enhancement Proposal (PEP) process
• Enhancements to the language in newer versions

(e.g. adding new operators, built in functions…)
• Various recommendations

Crucial for maintaining readable code:
• PEP 0008: Style Guide for Python Code

https://www.python.org/dev/peps/pep-0008/
• PyCharm automatically checks PEP8 compliance
• We will follow PEP8 in our assignments

https://www.python.org/dev/peps/pep-0008/

Some PEP8 basics

Variables and functions should have
informative, lower case names:
• ✓ word_count ✗wdct
• ✓ find_nouns() ✗findnn(), FindNouns()

White space around operators:
✓count = previous + 1
✗count=previous+1

Line length should be 79 characters maximum
Nice overview:

https://realpython.com/python-pep8/

https://realpython.com/python-pep8/

Indentation and hierarchy

Note that indentation is hierarchical:
if x > y: # Not indented, always happens.

if x > y * 2: # Indented, happens if x > y
print("it's a lot bigger!") # Indented twice!

else:
print("it's a bit bigger") # Indented twice!

else:
print("it's smaller")

Exercise – checking things
 Suppose we have a variable my_name, which holds a

name
 We want to guess gender based on the name and use a

very simple heuristic:
• Name ends in -a: gender_guess = "F"
• Otherwise: gender_guess = "M"

 How would the code look to check
my_name with the value "Linda"?

• Remember how to look up the last character in a string…
• Remember the difference between = and ==
• (Solution also in Canvas)

Checking things

my_name = "Linda"

if my_name[-1] == "a":

gender_guess = "F"

print("ends in -a, probably female")

else:

gender_guess = "M"

print("does not end in -a, guess male")

How can we check the palindrome?

 If something is a palindrome, then it is
identical to its reverse

How can we reverse a string?
>>> 'hello world'[::-1]

'dlrow olleh'

>>> # This means: Go through entire string: 'bla'[:]

>>> # Do it in steps of -1: 'bla'[::-1] == 'alb'

Full palindrome checker V1

test = "kayak"

Get the reverse of the input string

reversed_test = test[::-1]

if test == reversed_test:

print("The input '" + test + "' is a palindrome")

else:

print("The input '" + test + "' is not a palindrome")

How to give our program parameters?

Changing the variable test in code every time
you want to check input is not an option

Users must be able to run the program
without altering code

We need input parameters or 'arguments'

Unnamed arguments

When we run a Python script from the command
line we can get anything written after the script
name like this:

Command line terminal:
> python my_script.py arg1 arg2 arg3

Script:
import sys
print(sys.argv)

Output:
['my_script.py', 'arg1', 'arg2', 'arg3']

Unnamed arguments

But there is no structure to these:
['test.py', 'arg1', 'arg2', 'arg3']

• They don't have names

• Must be in a specific order

• Must all be present

• No helpful message for the user what input is allowed

• We could make a better way… or import one!

Building block: argparser

import argparse

parser = argparse.ArgumentParser()

parser.add_argument('-i', '--input', default="kayak", help="text

to check")

options = parser.parse_args()

word_to_test = options.input

argparser – other options

Unnamed, mandatory positional argument

parser.add_argument("filename", help="file to process")

options = parser.parse_args()

filename = options.filename

argparser – other options
Boolean options (neater than saving ‘yes’ or ‘true’
Compare:

parser.add_argument("--parse","-p", action="store_true",
help="file to process")

parser.add_argument("--doparse","-d", action="store",
default="yes",help="file to process")

options = parser.parse_args()

if options.parse:
…

if options.doparse == "yes":
…

argparser – help
> python heb_pipe.py -h

usage: python heb_pipe.py [OPTIONS] files

positional arguments:

files File name/pattern of files to process (e.g. *.txt)

optional arguments:

-h, --help show this help message and exit

standard module options:

-w, --whitespace Perform white-space based tokenization

-t, --tokenize Tokenize word forms into morphological segments

-p, --pos Do POS tagging

-l, --lemma Do lemmatization

-m, --morph Do morphological tagging

-d, --dependencies Parse with dependency parser

-e, --entities Add entity spans and types

-c, --coref Add coreference annotations

-s {auto,none}, --sent {auto,none}

XML tag to split sentences, e.g. sent for <sent ..>

(otherwise automatic sentence splitting)

Homework – due next Wednesday

You will find the rudimentary palindrome.py in
Canvas
• In the comments you will find 4 tasks:
 Add 2 parameters for input and True/False output mode
 Add handling for capitalization

 Add handling for spaces in input

• The comments will guide you and provide some
sample inputs
 If your inputs go through correctly – all is well!

 If not – try debugging in PyCharm first!

 Ask Janet and me for help, and come to office hours!

