
LING-362

Introduction to
Natural Language Processing

Tagging and Hidden Markov Models

Deep Learning in language models

 In a feed forward network we could do:

Jurafsky & Martin (2017)

LSTMs are even more complex

2

Greff et al.
(2015)

What are these cells learning?

3

Training your own

A relatively simple model works out of the box
using PyTorch:
• pip install torch

• https://github.com/pytorch/examples/tree/master/wo
rd_language_model

Other good libraries: Tensorflow, Keras

https://github.com/pytorch/examples/tree/master/word_language_model

Bonus fun

You can test AllenNLP’s neural LM here:
• https://demo.allennlp.org/next-token-lm

And you can chat with a neural network
trained on conversational pairs

Example:
• http://neuralconvo.huggingface.co/

• (also compare Microsoft’s TAY:
https://twitter.com/tayandyou)

5

https://demo.allennlp.org/next-token-lm
http://neuralconvo.huggingface.co/
https://twitter.com/tayandyou

Do neural LMs solve all problems?

Generated on
2021-10-18

More information

We will learn more about practical applications of
neural networks later

 Learning how neural models work in depth is
outside the scope of this course
• Jurafsky & Martin 2017, C7 (Canvas) is a good starting point
• Grad students: once you are confident in coding,

consider taking LING-504/COSC-576

 Further reading:
• Hands-on Machine Learning with Scikit-Learn and

TensorFlow / A. Geron, 2019
(https://github.com/ageron/handson-ml)

7

https://github.com/ageron/handson-ml

A more abstract view of ngrams

What do language modes really ‘model’?
• Probabilities of individual words

• Probabilities of sequences of words

How is our language model using them?
• Get transitional possibilities probabilities

• What are the odds of moving from word X to word Y?

➢We’ve seen something like this before…

Transitional probabilities

Moving through a language model is like
progressing in a web of words:
• Let's say I type the word "Give" into my smartphone’s

message app

• This is a job for the auto SMS wizard! ☺

• Here's what happens when I click next, next…
 Give me a bit better than the bus and should be there in a

couple of days ago…

Language models as FSAs

 Language model choices are probabilistic – different
from deterministic FSAs

 But we can represent them as weighted automata:

?-gram model??

Markov Chains

 A set of ordered variables with probabilities following
the Markov Property:
• The probability of each value of Xi in the sequence depends

only on Xi-1

• (Or in variants: some other sufficiently small number:
second order Markov Model, third order… etc.)

• In other words: context effects are limited, but can chain

• Formally: P(Xi =x| Xi-1 =x1, Xi-2 =x2,…) = P(Xi =x| Xi-1 =x1)

 This is a shameless, but very useful simplification! ☺

11

An example

 Suppose the difficulty of a homework assignment
is influenced by the previous one
• If the last assignment was easy, this next one will be hard

with 70% probability (but 30%: easy)
• If the last one was hard, 60% that the next will be easy (but

40%: still hard)
Results are uncertain, but depend only

on last time
Globally we still model a process where difficulty

alternates across the chain

➢ This works not just for words!!

12

The Markov property assumption

Note n% transition depends only on the
current state

We get a 'plausible' sequence overall
What we need for this:

• Probabilities of each P(wk|wk-1)

• Smoothing for missing values

➢We know how to get these for words, but
what about other categories?

13

Beneath the surface

Token n-gram models represent transitions
between actually observed characters/words

We can call them Visible Markov Models
(VMMs)

Besides properties that are overt, we are often
interested in the probabilities of
hidden categories

These will require Hidden Markov Models
(HMMs)

14

Invisible categories

Which categories are hidden?
• We may not be interested in a specific adjective like

number (than)
• We might want to know the likelihood of any

comparative adjective at this position
• Or the probabilities that words refer to a company, or

have positive sentiment, or …
• How can we look at categories that are not in the data

explicitly?

Let’s look at an example

15

POS tagging

Probably the most widely used ‘hidden’
category in NLP
• Assume each token has exactly 1 correct part of speech
• We can’t see it, but it’s there
• If we knew the POS tags of a text, we could create

n-gram models describing them:
 ART ADJ N → NP trigram!

 TO ADV V → split infinitive!

➢What tags are there?

16

Tag sets for English

Common in the US:
Penn Treebank Tagset (PTB) 36 Tags
Extended PTB (AMALGAM/TT) 57 Tags

Common in the UK:
CLAWS 5 62 Tags
CLAWS 7 137 Tags

Other notable mentions:
Brown tag set 85 Tags
Google “Universal Tags” (V2) 17 Tags

17

The PTB tag set (vanilla)
CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or conjunction
JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative
LS List item marker
MD Modal

NN Noun, singular or mass
NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun

PRP$ Possessive pronoun
RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative
RP Particle
SYM Symbol
TO to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person sg. present
VBZ Verb, 3rd person sg. present

WDT Wh-determiner
WP Wh-pronoun

WP$ Possessive wh-pronoun
WRB Wh-adverb

18

Tagging exercise

Tag the text: Is ISIS Going Broke?
• What’s easy and what’s hard?

• How do we determine the correct tag?

• How can a computer do it?

 If you have a printer handy or can annotate on
screen easily (e-pen) – use the PDF

Otherwise try the Excel spreadsheet and put
tags in the second column!

19

The PTB tag set

There is a lot to be said about the PTB tag set
• Successes and shortcomings

• Extensions since its inception – notably through the
AMALGAM project (2001), TreeTagger, OntoNotes,
English Web Treebank…

We don't have time to discuss these…
For this course: PTB (a.k.a. vanilla PTB) will be

our only tag set for English (more: LING-367)

20

How does a POS tagger work?

To decide what POS tags to assign, an
automatic tagger consults training data
• Known POS distributions

• Known conditional probabilities P(POS2|POS1)

• …

We can get initial probabilities for a single
word…
• but the tagger can also continue a plausible sequence

• First let’s see what we can do with a tagger using NLTK

21

Tagging with NLTK – tagging.py
import nltk
text = "Mr. Pickwick turned azure."

Get a list of tokens
tokenized = nltk.word_tokenize(text)

Make it a list of (token, pos) tuples
tagged = nltk.pos_tag(tokenized)

print(tagged)
Note the error!

[('Mr.', 'NNP'), ('Pickwick', 'NNP'), ('turned', 'VBD'),
('azure', 'NN'), ('.', '.')]

22

What can we do with ‘tagged’?

Tagged data is a list of tuples
Can be separated into two lists for processing

just tags:

words = []
tags = []
for word, tag in tagged:

words.append(word)
tags.append(tag)

23

Inspecting frequencies

tag_dist = nltk.FreqDist(tags)
word_dist = nltk.FreqDist(words)
print(tag_dist.most_common(4))
print(word_dist.most_common(100)[90:])

24

And plotting
 To plot you must install Matplotlib and NumPy from the

command line:
> pip install numpy
> pip install matplotlib

 Then in Python:

word_dist.plot(50)

word_dist.plot(50, cumulative=True)

25

Tagged data from nltk

You can also get some ready corpora from
NLTK:
from nltk.corpus import masc_tagged

words = []
tags = []
for word, tag in masc_tagged.tagged_words():

words.append(word)
tags.append(tag)

26

Homework – for Wednesday, Nov 3

Write a program that:
• Takes a text file input

• Tokenizes and tags the text with NLTK

• Goes through the result and saves only common nouns

• Prints the most frequent 10

• Plots the top 100 using nltk’s FreqDist

Run your program on some text
 Find one word mistagged as a noun and write as a

comment – why do you think this happened?

27

Exercise – verb proportions

Try to get the proportion of verbs in some text:
• Read a text file saved from the Web
• Tokenize and tag it
• Loop through data and get:
 Length in tokens

 Amount of verbs

 Print proportions with a verbal tag using one of:
if tag in ["VB","VBZ",...]:

…

if re.match(r'V.*', tag) is not None:

…

if tag.startswith("V"):

28

We can also get this by sentence

import argparse
from nltk import word_tokenize, pos_tag,
sent_tokenize

29

We can also get this by sentence

parser = argparse.ArgumentParser()
parser.add_argument("file")
options = parser.parse_args()

with open(options.file, 'r') as f:
text = f.read()

sentences = sent_tokenize(text)
sent_num = 0

30

We can also get this by sentence
for sentence in sentences:

tokens = nltk.word_tokenize(sentence)
tagged = nltk.pos_tag(tokens)
length = len(tokens)
verbs = 0
sent_num += 1
for token, tag in tagged:

if tag.startswith('V'):
verbs += 1

print("Verb ratio for S" + str(sent_num) + ": " +
str(float(verbs)/length))

31

