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A word about new files and projects

® You don’t have to create a new project (a bit
like a folder) ever time

@ You can create a New... > Python file

® Different projects may have different pythons!
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Key terms from Jurafsky/Martin

® False positive / negative

e Accuracy -> precision
e Coverage -> recall
® Some extra regex tricks: (caps for opposite)

e \b a 'word boundary'
e \d a digit

e \wW a 'letter’

e \s whitespace

e x{n,m} specify n to m repetitions of previous



A neat site to test these

® You can test your regex at:
e http://regexr.com/

® Note the 'multiline’ flag if you're using anchors
(" and S)


http://regexr.com/

Using RegEx in Python

® Specific groups
>>> import re

>>> matchl = re.search("b([aeiou])"”,"brambular")
>>> matchl.group()

lbul
>>> match1.group(1) (... )

u
>>> re.sub(r'\(', '-LRB-', '(see')
'-LRB-see’

|-




Regex group substitution

® We can grab stuff out of matches with \1, \2..
® Note the raw string (otherwise: \\1, \\2)

>> word = "bombastic"

>> word = re.sub(r'(b[aeiou])’, r'\1\1', word)
>> word

'bobombabastic'

® The number \1 always refers to the first part of
the pattern in brackets (\2 is the second brackets,
if available, etc.) — like group(1) etc.
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Now tokenization for real

® How does NLTK's tokenizer work?

e Actually you can almost read the code right now!
e Here's the important stuff



nltk.tokenize.treebank

® Note the use of def some_function(argl,arg2,...):

import re

def tokenize(text, CONTRACTIONS2, CONTRACTIONS3):

text = re.sub(r'r\"', r'""’', text)
text = re.sub(r'(*’)", r' \1', text)
text = re.sub(r'([ (\[{<])"', r'\1 7', text)
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nltk.tokenize.treebank (adapted)

#punctuation

text = re.sub(r'([:,1)([*\d])’, r' \1 \2', text)
text = re.sub(r'([:,])S", r' \1 ', text)

#...6 more

#parentheses, brackets, etc.

text = re.sub(r'((NI\[\(\)\M\\<\>])', r' \1 ", text)

text = re.sub(r'--', r' -- ', text)

#add extra space to make things easier
text="""1+text+""
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nltk.tokenize.treebank (adapted)

# Ending quotes
text = re.sub(r'’, " " ", text)
# ..

# Contractions

text = re.sub(r" ([ 1)('[sS]]'[mM]]'[dD]|') ", r"\1\2 ", text)

text = re.sub(r"([' 1)('II|'LL|'re|'RE]|'ve|'VE|n't|N'T) ", r'"\1 \2",
text)
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nltk.tokenize.treebank

for regexp in CONTRACTIONS2:

text = re.sub(regexp, r' \1 \2 ', text)
for regexp in CONTRACTIONS3:

text = re.sub(regexp, r' \1 \2 ', text)

return text.split()



Not easy to follow, but...

@ This is actual working code for entry level
tokenization
@ Just uses RegEx!!

® Full code here:
http://www.nltk.org/ modules/nltk/tokenize/treebank.html

» More professional options out there too
(notably Stanza, SpaCy, the TreeTagger
tokenizer in Perl or in Python here)

» Special tools for more challenging languages
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http://www.nltk.org/_modules/nltk/tokenize/treebank.html
https://github.com/amir-zeldes/HebPipe/blob/master/lib/whitespace_tokenize.py

Exercise: Phone number scraper

® Download phones.py from Canvas
e Fix the script so it finds all phone numbers in the text
e Some of the steps have been done for you

e Bonus question: can you print out all the numbers in a
uniform format?



Basic solution

lines = text_about_phones.split("\n")
phone_pattern = r'(\(?[0-9]+\)? ?)+

for line in lines:
potential_match = re.search(phone_pattern,line)
if potential_match is not None:
phone_number = potential _match.group()
print(phone_number)



Phone number scraper

® Basic scraper workflow:
e Get some text

e Go through it line by line:
one option - make a list:

line_list = my_string.split("\n")
for line in line_list:

e Search for something with regex
e Collect capturing groups in a list for output



A word about files

® Normally text_about _phones is from a file
® To open a file, Python needs to know its name
® The file’s name is a folder path, and can be:

e Absolute:
[/Users/Kim/nlp/phones.txt (Mac/Linux)
C:\Users\Kim\Desktop\phones.txt (Windows)

e Relative: nlp/phones.txt (terminal is in /Users/Kim/)

e Just the file name: phones.txt - Python will look for the
file in the script’s directory

® How can the user supply this information?
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Building block - reading files

from argparse import ArgumentParser

parser = ArgumentParser()
parser.add_argument(“file")

options = parser.parse_args()
phone file = options.file

text _about _phones = open(phone_file).read()



Cleaning up the number

def clean_number(number_text):
i / dOCString
:param number _text: string containing a phone
number and special characters: (, +, )
:return: cleaned: string without special characters

min

cleaned = re.sub(r"[\+ \(\)]","", number_text)
return cleaned




Cleaning up the number

if potential_match is not None:
phone_number = potential _match.group()
clean = clean_number(phone_number)

if len(clean) > 6:
print(clean)



How about recognizing the country?

® A list of numbers is nice but...

®In some cases, lists are not enough:

e Suppose you want to know what country these
numbers come from

e You recognize the prefix using r'\+[0-9]+'
e |t would be neat if we could 'look up' what country this
comes from

e We'd need a dictionary
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Dictionaries

@ Dictionaries are like lists, but they don't map
from index position to value:
e shopping_list[1]
® Instead they map keys to values:
e grocery_type['broccoli']
'vegetable'



Dictionaries

® To make a dictionary, we specify the mapping of
keys to values:
prefixes — II+1II:IIUSII’ "+972":"|L"’ II+63II:IIPHII}

® We can also add some later:
prefixes["+52"] = "MX"

® And access them:

some_pref = "+52"
country = prefixes[some_pref]
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Exercise for after class

® You can try adding functionality to the number

scraper (no need to submit):

e Start by creating a dictionary of some prefixes:
prefixes = {}
prefixes['52"] = "Mexico"

e Capture the +123 part of phone numbers if it appears

e If you captured a prefix for the current number, output the
country instead of the prefix, then the rest of the number:
this_prefix = matcher2.group(1)

print(prefixes[this_prefix] + " " + number_without_prefix)

'‘Mexico 015512345678
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How to check if you know the prefix?

@ This can cause an error if you've never seen
+345:
print(prefixes["345"])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: '345'

® Instead check first:

if "345" in prefixes:
print(prefixes["345"])
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What else can we do with regex?

® Regular expressions are a very powerful way of
defining and manipulating patterns of strings

® For some applications regex can get you very
far

@ Is regex enough to make a talking computer?
® What would constitute one in your opinion?



The Turing Test

® Test devised by Alan Turing (1950)

e See whether computers can communicate
e By proxy whether they are intelligent
® Original test:

e Computer substitutes participant in the "imitation
game", in which a man/woman try to fool a judge
about their gender

® Revised test:

e Person and computer try to convince judge that they
are a human
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Turing Test

® The best known implementation is the
Loebner Prize (https://aisb.org.uk/new site/?page id=2)
@A little like a mini-nobel prize for NLG/dialogue

systems
e Running since 1990 (last year on hiatus)

e Small prizes for 'best' program

e Larger one time prizes:

$25,000: judges can't distinguish program from human
$100,000: same including A/V input
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https://aisb.org.uk/new_site/?page_id=2

Spot the not (blue is human)

Hello, my name is Andrew. What’s your name?
- Hello Andrew nice to meet you, my name is Amos

- Hello there. Your name is Andrew. My name is Millie.
- Why don’t you tell me a little more about yourself ?

- No, | am rather shy

- My name is Millie and | am a human volunteer for the Loebner Prize. | live in Leeds and
am single. | am interested in Al but don’t have a chatbot myself. What about you?

-l am a researcher in Artificial Intelligence at Goldsmiths University, do you
know what that is?
- Of course, it is designation title is self explanatory!

- Do you enjoy your research? | am a volunteer who has agreed to help with a Turing test.
- Will you tell me about your dreams?

- Sure, what would you like to know?

- I dream that | will pass my university exams.
- Canyou rephrase that?

- Yes | will, what would interest you about my dreams?
- No, not really. What don’t you understand?




Spot the not (blue is human)

- What is my occupation?
- You are one for changing topics. Aren’t you a researcher?
- Well you said your job was RESEARCHER.
- Can you tell me about a film you haven’t seen?
- If I haven’t seen it, how would | tell you about it?
- you have not seen = Are you asking about my have not
seen?
- What do you think of Trump?
- He will make a nice addition to the zoo

- | read that over 50% were either concerned or scared
about Donald Trump being President. if that’s the case,

why lglid they vote for him?
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Having conversations with a computer

® Eliza was the first 'chatbot' to convince some

humans of its intelligence

e Basic 'Rogerian' therapist (What do YOU think about
that?)

e Some basic linguistic awareness — recognize user
expressions, conjugate and reflect them back

e Let's talk to Eliza and figure out what she knows and
doesn't know about speaking English




Having conversations with a computer

@ You can try this at home too:

e Download eliza_simplified.py from Canvas

e |In the terminal console run:
> python eliza_simplified.py



Eliza: sample conversation

Therapist

Talk to the program by typing in plain English, using normal
upper-and lower-case letters and punctuation. Enter "quit" when
done.

Hello. How are you feeling today?

>I'm a little tired.

Why do you think you're a little tired?

>I probably should have gone to bed earlier.

Why do you say that you probably should have gone to bed
earlier?

>I think I don't sleep enough during the week.

Do you doubt you don't sleep enough during the week?
>No, definitely.
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® Eliza is looking for certain patterns:

ow does Eliza work?

# pats, the main response table. Each element of the list is a
# two-element list; the first is a regexp, and the second is a
# list of possible responses, with group-macros labelled as %%

pats = [
[r'l need (.*),
[ r"Why do you need %%?",
r'"'Would it really help you to get %%?",
r'"Are you sure you need %%?"]],

self
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How does Eliza work?

® Use certain substitutions:

# reflections, a translation table used to convert things you say
# into things the computer says back, e.g. "l am" --> "you are”

reflections = {
llam

: "are",
: "were",

"i"  :"you",

"i'd" : "you would",

"i've" :"you have",

"i'N" : "you will",

Reimplementation of Weizenbaum's code by Joe Strout, Jeff Epler, Jez Higgins in Python




How does Eliza work?

print("Therapist\n--------- ")

print("Talk to the program by typing in plain English, using normal upper-")
print('and lower-case letters and punctuation. Enter "quit" when done.’)
print('='*72)

print("Hello. How are you feeling today?")

S =

self

A
CO()25()  Reimpl ion of Weizenbaum's code by Joe Strout, Jeff Epler, Jez Higgins in Pyth
plementation o elzenbaum’s code by Joe Strout, Je pler, Jez Higgins In Python




How does Eliza work?

mappings = {}

for pattern in pats:
find = pattern[0]
replacements = pattern[1]
mappings[find] = replacements

while s != "quit":
s = input(">"
if len(s) < 1:
s = "quit"
print(s)
s =re.sub(r"[\.1]S", "", s)
response = respond(s, mappings, reflections)
print(response)

@ - o =2 @ Reimplementation of Weizenbaum's code by Joe Strout, Jeff Epler, Jez Higgins in Python



How can we improve on Eliza?

® Try to make Eliza produce a blatant error:

e What kind of error is it?
Morphology
Syntax
Semantics
Pragmatics
Memory?
e How can we solve it?
More patterns
More reflections
Completely new mechanisms
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Homework

® Please do the next assignment to practice
RegEx in Canvas (pig_latin.py)
® Due on Monday

»>Instructions are in the script file+Canvas assighment



