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Notes about homework

Create same dictionaries for start/trans/emit
Create the state list from seen tags
Read a file line by line…
Check if lines have a tab…

• Split by tab
• Get POS and word columns
• Remember tag as prev_tag for transition…
• +=1 to relevant frequencies

Divide all dictionary values by sum of 
dictionary so you get probabilities



Notes about homework

# Suppose each key in mydict points to a dict of counts
# Compute probabilities from sums and store in ‘probs’
probs = defaultdict(lambda: defaultdict(lambda: 0.0001))

for pos1 in mydict:
total = sum(mydict[pos1].values())  # sum values for this pos
for pos2 in mydict[pos1]:

freq = mydict[pos1][pos2]
probs[pos1][pos2] = freq/total

# And similarly for emit_p!



start_p
* 
emit_p

Brief review: Viterbi algorithm

I want to fly
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Backtrace
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From tagging to sequences

Part of speech labeling is a classic example of 
token-wise tagging:
• Input is a sequence of words (tokens)
• Each word receives exactly one category
• There are usually no other features except words to 

decide the correct tag

But not all labeling tasks are like this!
We could tag more complex sequences and 

with more input features!



Sequence labeling – NER

A typical example is Named Entity Recognition
Not every token is labeled:

PER -- ORG --

• Kim visited Intel .

Labels come in spans:

PER PER -- ORG ORG

• Kim Jung visited Intel Corp.



How many spans?

 If we only use labels like PER and ORG, we can 
treat this as an HMM/Viterbi problem
• Tags: PER, ORG, .., -- (‘--’ is a tag)

• Input: Kim, Jung, visited …

• Emission probabilities: P(Kim|PER), P(Intel|ORG)

• Transition probabilities: PER → --→ ORG → ORG

But how can we tell how many ORGs we have?
• Intel Corp. ORG ORG → 1 org., 2 tokens

• IBM  Google lawsuit ORG ORG --→ 2 orgs!!



Solution: BIO encoding

We add more label types to indicate Beginning 
and Inside of entities:
• IBM B-ORG

• Corp. I-ORG

• hired O

• Kim B-PER

• Jung I-PER

The label O is like our ‘--’: Outside any entity



Solution: BIO encoding

Labels impose restrictions on transitions:
• P(B-PER → I-PER) > p(I-PER → B-PER)

• P(O → I-PER)  = 0 (why?)

We can still use HMM/Viterbi…
But is just one emission probability enough?

• P(PER|Kim) …

• What about other features?



Just one emission?

Many things influence the probability that a word 
is a person/company name:
• Capitalization (very good at finding ‘O’)
• All caps? (ORG)
• Word length
• Knowledge bases (is this in a list of company

names? Place names?)
• …

Viterbi can only multiply feature probabilities
Not good for learning arbitrary feature 

conjunctions (weighted features)



Using multiple features

 Ideally our input should look like this:
• IBM NNP allcaps … B-ORG

• Corp. NNP title … I-ORG

• hired VBD lower … O

• Kim NNP title … B-PER

• Jung NNP title … I-PER



Decoding - CRF

Efficient decoding over multiple weighted 
features can be done using Conditional Random 
Fields (CRF)

We do not have time to implement CRF in this 
course

 For our purposes, a Linear Chain CRF is 
• a sequence label decoder equivalent to a Viterbi decoder 
• using multiple input features 
• and arbitrary functions for features over the sequence

Advanced reading: Sutton & McCallum (2006) in 
Canvas (optional!)



Decoding - CRF

For smaller datasets, CRF taggers can learn 
joint discrete feature value distributions:
• Python library: 
 pip install python-crfsuite (Okazaki 2007)

• Good off the shelf CRF tagger:
 Marmot (Müller et al. 2013; Java), 

http://cistern.cis.lmu.de/marmot/

• CRF NER tagging example in Canvas:
 ner/crf_entities.py

http://cistern.cis.lmu.de/marmot/


Neural sequence labeling

Since features can be anything…
For larger datasets, we can use neural 

networks
Word embeddings as features
What algorithm to use?

• Definitely not Viterbi: we don’t want the product of
probabilities that dimension 1 is…

• -> use CRF on neural network outputs!



Popular libraries

Flair (Akbik et al. 2019)

AllenNLP (Gardner et al. 2018)

NCRF++ (Yang & Zhang 2018)



Example – Flair (Akbik et al. 2019)

from flair.models import SequenceTagger

# pretrained NER tagger
tagger = SequenceTagger.load('ner')

sentence = Sentence('George Washington went to Washington .')

# predict NER tags
tagger.predict(sentence)

# print sentence with predicted tags
print(sentence.to_tagged_string())

George <B-PER> Washington <E-PER> went to Washington <S-LOC> .

For training see: 
https://github.com/flairNLP/flair/blob/master/resources/docs/TUTORIAL_7_TRAINING_A_MODEL.md

https://github.com/flairNLP/flair/blob/master/resources/docs/TUTORIAL_7_TRAINING_A_MODEL.md


From HMMs to syntax

We’ve already seen some simple ways of 
dealing with syntax:
• Markov models capture surface properties of syntax
 N-grams (VMM): A lot of …

 HMM: DT JJ NN



From HMMs to syntax

We’ve already seen some simple ways of 
dealing with syntax:
• Markov models capture surface properties of syntax
 N-grams (VMM): A lot of …

 HMM: DT JJ NN

• Finite-state methods build possible sequences
 Coptic: 

 PREP -> ART -> NOUN

 AUX -> SUBJ -> V -> OBJ



Modelling syntax

Why isn’t it enough?
• FSAs and n-grams (weighted FSAs) have no memory
• No way to manage long distance dependencies:
 Pick up

the one we saw yesterday…

• Distance > n (for n-order Markov model)
• Unlimited embedding depth can exceed properties of 

regular languages
• Sparse attestation can exceed learnability with realistic 

(finite) unconstrained neural network



Languages and complexity

Regular languages are the simplest grammars 
we can build:
• Include all finite languages (where we can enumerate 

all expressions)

• Potential for infinite generation (a+)

• Optional or empty elements (ab?, ab*)

• (Regular languages without the latter are also called 
'star-free')



Beyond regular languages

What if we want to name a+b something else?
• We could do things like: (DT+JJ+N)=NP: NP+…

• This is still a regular language (can use FSA)

• Even some recursion is OK: 
 x -> x

 un + adj -> adj

Are there constructions that can’t be 
expressed using regular grammars?



Example: center-embedding

 In English we can center-embed relative clauses:
• The boy laughed

• The boy the cat bit laughed

 Structure:
• S > NP VP

• S > NP S VP → NP NP VP VP

We can potentially continue to center-embed…
• Result: 

utterances of the type NPn VPn (or generally anbn)





Another example

 Less famous – Semitic embedded compound 
modifiers:
• [bat [melex ‘ašir] yafa]

daughter king rich.M beautiful.F

Beautiful daughter of a rich king

• [bat [melex [‘am gadol]  ‘ašir]   yafa]
daughter king people great.M rich.M beautiful.F

Beautiful daughter of a rich king of a great people

➢ Note that agreement information must match
➢ Memory: Nn An with matching gender/number



The Chomsky Hierarchy

“self-embedding” categories:
• Are a feature of context free languages

• Allow us a sort of 'memory'

• Long thought to cover human grammars

Context free grammars (CFGs) occupy Type-2 
of the Chomsky hierarchy (Chomsky 1956)

Type: 0

1

2

3
(Image: Wikimedia)



The limits of CFGs

Context free grammars allow rules of the form:
• α > β

• α is a non terminal symbol (hidden node: NP, VP, S …)

• β is any sequence of terminal or non-terminal symbols 
(tokens or higher nodes)

Examples:
• S > NP VP (could still be regular)

• S > NP S VP  (context free)



Are human languages more complex?

Some conceivable rules are not covered:
• We cannot ‘peek’ to limit application of a rule:
 S > NP S VP   (OK)
 PP S PP > PP NP S VP PP  (check for surrounding PPs: not OK)

Rules of this type are context-sensitive
• αAβ > αγβ

• We can prove that patterns of the type anbncn are 
context-sensitive 

• So are patterns like (abc …)n



Are human languages more complex?

There are few examples of context sensitive 
structures in natural language

Famous example: Swiss German crossing 
dependencies (Shieber 1985)

Image: wikimedia



Are human languages more complex?

There are few examples of context sensitive 
structures in natural language

Famous example: Swiss German crossing 
dependencies (Shieber 1985)

Image: wikimedia



Context Free Grammars

CFGs are nevertheless enough for most structures 
and much more efficient to compute
• A context free grammar is a set of (de)composition rules 

over a set of symbols:
 NP > DT NN

 NP > NNP

 DT > the

 NN > house

 NN > mouse

 …

• Symbols which do not decompose are called terminals 
(often =tokens)



Context Free Grammars

The set of decomposition combinations 
generates all utterances in the language L
modelled by the grammar

A starting symbol must be selected to 
generate from; usually S



Context Free Grammars

Some example rules:
• S > NP VP
• VP > V NP
• VP > V
• V > eats
• NP > DT NN
• NN > mouse 
• NN > house
• DT > the
• …



Now we can generate…

 (never minding meaning – à la 'colorless green 
ideas…')



Exercise

Let’s try to extract context free rules from 
sentences:
• Every sentence has S at the top

• Breaks down into phrases

• Phrases decompose into our POS tags/other phrases

• POS tags lead to tokens



Exercise

Example:
• They really go above and beyond!

Tag it first:
• PRP    RB     VBP  RB    CC    RB    .

So we have: 
- RB > really
- VBP > go
…

What are the phrase structure rules?



Exercise

A possible analysis (English Web Treebank; 
other analyses are possible!)

How can we write the rules?



Exercise

Break down the transitions:
• S > NP ADVP VP

• NP > PRP

• ADVP > RB

• VP > VBP ADVP

• ADVP > RB CC RB


