
LING-362

Introduction to
Natural Language Processing

Finite State Methods (ctd.)

Python Coding Studio today!

 Join guWeCode on September 29th for an intro
lesson on Python!

 If you are a beginner or just want a refresher, this
is a great opportunity to sharpen your Python
skills and meet others interested in coding. The
session will be from 5-6:30pm in St. Mary's Room
120. We hope to see you there!

RSVP: https://forms.gle/cuhoPzt6TqMeUaSm8

https://forms.gle/cuhoPzt6TqMeUaSm8

GU CS grad research
Friday, October 1 @1:30 PM ,
ZOOM: https://georgetown.zoom.us/j/94352180689

 Yang, Eugene and Lewis, David D. and Frieder, Ophir, "Heuristic Stopping
Rules For Technology-Assisted Review", Proceedings of the ACM
Symposium on Document Engineering 2021 (DocEng '21) (2021)

 Yang, Eugene and Lewis, David D. and Frieder, Ophir, "On Minimizing Cost
in Legal Document Review Workflows", Proceedings of the ACM
Symposium on Document Engineering 2021 (DocEng '21) (2021)

 Wang, Yanchen and Singh, Lisa, "Analyzing the impact of missing values
and selection bias on fairness", Int J Data Sci Anal 12, 101–119 (2021).

 Kornraphop Kawintiranon, Lisa Singh. Knowledge Enhanced Masked
Language Model for Stance Detection. Proceedings of the 2021
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (NAACL-HLT
2021).

https://georgetown.zoom.us/j/94352180689

Finite state automata

Definition:
• FSA ≡ {Q, q0, F, Σ, δ(q,i)}

Where:
• Q is a set of possible states qi… qn

• q0 is the starting state within Q

• F is a subset of end states within Q

• Σ is the alphabet

• δ(q,i) is a set of allowable transitions from state q given
input i

Automata as graphs

States indicate steps in the derivation
Morphology as transitions between lexicon

items
➢What about linguistic order of processes?

➢Underlying and surface forms? (is -iest a suffix?)

Numerals
Adapted from Karttunen (2004)

import re, exrex

one_to_nine = "(one|two|three|four|five|six|seven|eight|nine)"

teen_ten = "(thir|fif|six|seven|eigh|nine)"

teens = f"(ten|eleven|twelve|(({teen_ten}|four)teen))"

ten_stem = f"({teen_ten}|twen|for)ty"

tens = f"({ten_stem}(-{one_to_nine})?)"

one_to_ninety_nine = f"^({one_to_nine}|{teens}|{tens})$"

Numerals

 Generate forms:
max_forms = 10

print(f"Generating {max_forms} random forms:\n")

for i in range(max_forms): # range generates numbers up to its argument

output = exrex.getone(one_to_ninety_nine)

print(output)

Output

• four

• two

• eight

• twenty

• forty

• twenty-five

• twelve

• eleven

• forty-one

• twenty-two

NLU vs NLG

 We can also recognize or reject numbers:

Test inputs
print("\nTesting inputs:\n")
inputs = ["ten","twenty-three","eleventy","fifty-ten"]

for word in inputs:
if re.search(one_to_ninety_nine,word) is None:

print("input " + word + " does not pass validation")
else:

print("input " + word + " is valid")

Output

Testing inputs:

• input ten is valid

• input twenty-three is valid

• input eleventy does not pass validation

• input fifty-ten does not pass validation

From forms to analyses

So far we’ve been working to generate all
possible forms in a grammar, but:
• In NLP we usually want to analyze some natural

language data: text → analysis

• In NLG we want to create English realizations of
underlying models: analysis → text

Better output

FSAs give a simple kind of output: Booleans
Either an input IS part of the language or it

ISN’T:
• grammatical == True / False

 Implementation in Python re:
• if match is not None:

…

Getting output
 Our automaton goes over the input, symbol by symbol,

and tries to find a valid set of states

 We can think of this as reading a tape with letters:

 But there’s no place to give output…

 We need another tape!

Finite State Transducers (FSTs)

A Finite State Transducer is a Finite Automaton
with two tapes: input and output
(also: lower and upper)

♥♥★

Formal definition

 FST ≡ {Q, q0, F, Σ, Δ, δ(q,i), σ(q,i)}
Where:

• Q is a set of possible states qi… qn

• q0 is the starting state within Q

• F is a subset of end states within Q

• Σ is the input alphabet

• Δ is the output alphabet

• δ(q,i) is a set of allowable transitions from state q given
input i, mapping to some states in Q

• σ(q,i) is a set of allowable outputs given state q and input i

Transducers as graphs

FSTs can be expressed as graphs with symbol
translations on the transitions

Suppose we wanted to translate Spanish gato
into English cat:

Transducers as analyzers

The same idea holds for morphological
analysis

Translate a word into an analysis:

Regular Relations

A regular relation describes:
• for every state change in a regular automaton

• a finite set of possible outputs

Regular relations are like bilingual dictionaries
for two regular languages
• They allow inversion (we can go from L2 <> L1)

• Allow composition (L1 > L2, L2 > L3 → L1 > L3)

What are the alphabets for each tape?

On the one side we have real words:
• cats

• panicked

• tries

On the other side?
• …

Where do we store all these words and
symbols?

Can we do this with re.sub?

Maybe, but…
• For real-world systems we will not want to write 10K

character regex substitutions

• More convenient to store words and categories in a
machine readable lexicon

• re.sub is a bit different from textbooks FSTs:
 Allows capturing groups

 Inversion property not guaranteed

• Python re is also not actually that efficient… (esp.
generation from nulls or ‘epsilons’)

Enter the .lexc format!

Developed by Xerox/AT&T for XFST
De-facto standard in most commercial FSMs
Used for morphological analysis, date/other

pattern recognizers, template generation…

Basic idea:
• Define symbols and categories
• Cascade through a set of continuation categories
• Output analyses as we go along
• Invert for generation

Enter the .lexc format!
Multichar_Symbols +N +Sg +Pl

LEXICON Root

Noun ;

LEXICON Noun

cat Ninf;

LEXICON Ninf

+N+Sg:0 #;
+N+Pl:s #;

Now we can “translate”
 Download from Canvas (Code > fsm):

• cat.lexc

• run_cat_lexc.py, fst.py

> python run_cat_lexc.py -h

usage: run_cat_lexc.py [-h] lexc inputfile

positional arguments:
lexc the .lexc file
inputfile an input text file consisting of the words

to analyze, one per line

optional arguments:
-h, --help show this help message and exit

Now we can “translate”
p = argparse.ArgumentParser()
p.add_argument("lexc", help="the .lexc file")
p.add_argument("inputfile", help="an input text file")
options = p.parse_args()

compile transducer
transducer = generate_table(options.lexc)
fst = FST(transducer)
fst.invert() # Analysis, not generation

with open(options.inputfile, 'r', encoding="utf-8") as f:
for line in f:

print(fst.transduce(line.strip()))

Now we can “translate”

 Inverted (analysis)

cat
->cat+N+Sg

cats
->cat+N+Pl

 Uninverted (generation)

cat+N+Sg
->cat

cat+N+Pl
->cats

A more complex lexicon

Download english1.lexc from Canvas
Some more words to play with:

Multichar_Symbols +N +V +PastPart +Past +PresPart +3P
+Sg +Pl

LEXICON Root

Noun ;

Verb ;

A more complex lexicon
LEXICON Noun

cat Ninf;
city Ninf;
fox Ninf;
panic Ninf;
try Ninf;
watch Ninf;

LEXICON Verb

beg Vinf;
fox Vinf;
make Vinf;
panic Vinf;
try Vinf;
watch Vinf;

A more complex lexicon
LEXICON Ninf

+N+Sg:0 #;
+N+Pl:^s #;

LEXICON Vinf

+V:0 #;
+V+3P+Sg:^s #;
+V+Past:^ed #;
+V+PastPart:^ed #;
+V+PresPart:^ing #;

Generating words on either tape

transducer = generate_table(options.lexc)
fst = FST(transducer)

print(fst.lower_words(n=3))

try+N+Pl
try+N+Pl
fox+N+Sg

Generating words on either tape

transducer = generate_table(options.lexc)
fst = FST(transducer)

print(fst.upper_words(n=3))

watch^s
try^ed
make^ing

Some problems

We’ll need some adjustment rules to fix these:
watch^s

try^ed

make^ing

These rules should apply at the morpheme
juncture (^ symbol used in our lexicon)

Replacement rules
 We can use re.sub to clean up our outputs in a separate function:

def clean_word(word):

e-deletion: make^ing -> mak^ing
cleaned = re.sub(r'e\^(ed|ing)', r'^\1', word)

e-insertion: watch^s -> watche^s
cleaned = re.sub(r'([szx]|ch|sh)\^s', r'\1^s', cleaned)

Remove remaining "^"
cleaned = re.sub(r'\^', '', cleaned)

return cleaned

Combining everything
generate clean words from analyses
print("\nGenerating clean word forms:\n" + "="*20)
to_generate = open(options.inputfile, encoding="utf-8").read()
to_generate = to_generate.strip().split("\n")
for analysis in to_generate:

generated = fst.transduce(analysis,with_input=False)
generated = clean_word(generated)
print(generated)

cats
watches
making

Epsilon insertion

Note that analysis doesn’t quite work, since we
expect inputs like “cat^s”

Pure C++ FSMs can consider producing such
symbols from empty input, also called ‘epsilon’

For our pure Python code we can do this:

analyzed = fst.transduce(word,with_input=False)

re.sub cannot invert caret deletion (epsilon insertion)
if analyzed=="" and re.search(r'(s|ed|ing)$',word) is not None:

with_caret = re.sub(r'(s|ed|ing)$',r'^\1',word)
analyzed = fst.transduce(with_caret)

Exercise 1

Add two y-replacement rules to fix these
outputs:
try+V+Past -> tryed

city+N+Pl -> citys

Exercise 2

Add a K insertion rule to fix these outputs:
panicing

paniced

Home work – Japanese verbs

For next Wednesday we will write a .lexc file
and a python script for Japanese verb forms

We will practice on four verbs from the two
major conjugation classes:
• -eru/-iru verbs: taberu 'eat', nobiru 'stretch'

• -u verbs: yomu 'read', hanasu 'speak'

Home work – Japanese verbs

We will model the causative and passive
inflections:
• -iru/-eru verbs:
 Drop 'ru'

 Add saseru (causative) or rareru (passive)

 or both: saserareru (be made to do something)

 tabesaseru: make someone eat; nobirareru: be stretched

• -u verbs:
 Drop 'u'

 Add aseru (causative) or areru (passive)

 or both: aserareru

 yomaserareru: be made to read

Home work – Japanese verbs

 Produce a .lexc file that:
• Defines the verb stems in each class (you will need two paths of

verbal endings)

• Defines the necessary suffixes (which differ in each class)

• Combines the suffixes correctly with each verb type

 In a separate python script, use the fst’s transduce
command to get analyses for the provided Japanese
words file (submit both .lexc and .py files!)

 You should get all 1+3 possible inflected forms for all 4
verbs (16 forms):

• taberu, tabesaseru, taberareru, tabesaserareru (be made to eat)

• …

Home work – Japanese verbs

Bonus: [1pt each, total 2pts]
• Add a gloss to each word in the .lexc file so your

analysis also outputs a translation:
 yomaseru -> read+V+Caus

• Add the honorific suffix -masu to the base form
according to this list, and the test forms to the .txt file:
 Type 1: (use a symbol +Hon)
 yomimasu

 hanashimasu <- note: si is pronounced shi in Japanese - use re.sub!

 Type 2: (use a symbol +Hon)
 tabemasu

 nobimasu

FSM: Going further
 More on XFST syntax: in Canvas
 XTAG English Morphology

• Upenn project for a large coverage English grammar (in TAG,
backed by FSM)

• http://www.cis.upenn.edu/~xtag/swrelease.html
 EMOR (and SMOR for German):

• http://www.cis.uni-muenchen.de/~schmid/tools/SFST/
 PCKIMMO – English FSM (and Japanese, Finnish)

• http://www.sil.org/pckimmo
 morpha/morphg – English grammar

• http://users.sussex.ac.uk/~johnca/morph.html
• Version ported to Java:

https://github.com/knowitall/morpha

http://www.cis.upenn.edu/~xtag/swrelease.html
http://www.cis.uni-muenchen.de/~schmid/tools/SFST/
http://www.sil.org/pckimmo
http://users.sussex.ac.uk/~johnca/morph.html
https://github.com/knowitall/morpha

