
LING-362

Introduction to 
Natural Language Processing

Syntactic parsing II



Exercise: results

For 13 sentences we can use:
• 159 rules (118 unique)

• 70 lexical + 89 phrasal

➢lexical rules would quickly become much bigger if we 
continue!



Exercise sentences

Top 10 rules:
• S > NP VP 11 (incl. with “.”)
• . > . 7
• NP > PRP 7
• DT > the 6
• NP > DT NN 5
• PRP > I 3
• CC > and 2
• RB > not 3
• VB > be 2
• VP > VBD 2



Can we build a grammar from trees?

Grammars can be induced from annotated 
data just like in our exercise

 In some ways, a corpus of syntax trees –
a Treebank – is a grammar

How often do we need the rules inherent in:



Answer

S > NP VP (once)
VP > V NP (once)
NP > DT NN (twice)
DT > the (twice)
NN > mouse (once)
NN > house (once)



Saving probabilities

 It's easy to note how often each rule occurred, 
• Saving this data gives us an idea of how likely each 

decomposition is

• Maybe we do need a rule for: 
 VP > V PP (overindulge in you)

 V > over+V (overindulge)

• But it's very rare/unlikely

Saving the probabilities gives us a 
Probabilistic Context Free Grammar (PCFG)



How many rules?

Would we get a lot more rules than we could 
come up with by hand?

The Penn Treebank Wall Street Journal corpus 
contains about 1 million tokens

How many distinct non-lexical transition rules 
does it contain (incl. POS)?

➢ ~17,500 (Jurafsky & Martin 2008:408)



Very nice, but…

So far we can only generate 
• Make all possible utterances using rules from a 

grammar or treebank

• We could build a ‘tree-chatbot’ ☺

NLP often less interested in generating 
• Random sentences are nice

• But we want to process actual sentences generated by 
humans

• Gateway to Natural Language Understanding (NLU)



How can we recognize a parse?

 Is this an English sentence?
• The cat the dog the mouse licked bit ran

Two ways to check:
• Top down, we generate all possible sentences:
 S > NP S VP (twice)

 S > NP VP (once)

 …

 V > ran



How can we recognize a parse?

 Is this an English sentence?
• The cat the dog the mouse licked bit ran

Two ways to check:
• Bottom up, we try to build phrases from words:
 DT > The  : means we might have a DT here

 …

 NP > DT NN : means we might have an NP

 …

 S > NP VP : OK, we’ve reached start symbol, all good!



Efficiency

 In principle it’s possible to use either approach
 In practice, it quickly becomes slow/impossible 

to apply so many rules so often for each 
sentence – recursion means infinite sentences!

➢We’d like to check all possible analyses at each 
position just once

➢ Example: The Cocke-Kasami-Younger algorithm 
(CKY)



Dynamic programming – CKY

Much like in the Viterbi case, it’s possible to 
‘keep track’ of a path over all possible choices

We conceptualize parses as a table:

The boys shop daily



Dynamic programming – CKY

We’ll only need the top diagonal half

The boys shop daily



Dynamic programming – CKY

The CKY algorithm keeps track of possible 
parses by noting if any cell in the table is the 
right hand side of a rule

The boys shop daily

DT



Dynamic programming – CKY

The CKY algorithm keeps track of possible 
parses by noting if any cell in the table is the 
right hand side of a rule

The boys shop daily

DT

NNS



Dynamic programming – CKY

The CKY algorithm keeps track of possible 
parses by noting if any cell in the table is the 
right hand side of a rule

The boys shop daily

DT NP

NNS



Dynamic programming – CKY

The CKY algorithm keeps track of possible 
parses by noting if any cell in the table is the 
right hand side of a rule

The boys shop daily

DT NP

NNS

VBP | NN



Dynamic programming – CKY

The CKY algorithm keeps track of possible 
parses by noting if any cell in the table is the 
right hand side of a rule

The boys shop daily

DT NP

NNS

VBP | NN VP

RB



Dynamic programming – CKY

The CKY algorithm keeps track of possible 
parses by noting if any cell in the table is the 
right hand side of a rule

The boys shop daily

DT NP S

NNS

VBP VP

RB



Some caveats

Note that we only get to look at the previous 
column at each level
• No way of checking two previous items
• Grammar must be in CNF

And we don’t really know which parses 
worked
• We only know that an S is somewhere in there
• We would need to keep track of derivations belonging 

together
• Allow multiple identical entries (several S also possible)



Dynamic programming – CKY

 Indexing multiple solutions

The boys shop daily

DT NP S

NNS NP

VBP | NN VP

RB



Dynamic programming – CKY

 Indexing multiple solutions

The boys shop daily

DT NP S | S

NNS NP

VBP | NN | VBP VP | VP

RB | NN



Parsing with NLTK – part 1

Let’s try to parse using the grammar we made 
together!
• Example script: nltk_parsing.py

NLTK includes implementations of a variety of 
parsing algorithms
• It is possible to use CKY, but we would need to 

generate and revert CNF style trees (dummy nodes)
• We want to keep our n-ary trees
• We will use NLTK’s ‘chart parser’ (a related algorithm)



Compiling the grammar
import nltk
from nltk import CFG

grammar_string = """
S -> ADJP NP VP

S -> NP VP
S -> NP VP ADVP
S -> NP VP SENT
… """

exercise_grammar = CFG.fromstring(grammar_string)



Parsing

test_sent = "I cried"

tokenized = nltk.word_tokenize(test_sent)

# Make a parser object, initialized with a grammar 
argument
parser = nltk.ChartParser(exercise_grammar)
# Parse tokenized data
trees = parser.parse(tokenized)
# Iterate through possible trees
for tree in trees:

print(tree)



Output

(S 
(NP (PRP I)) 
(VP (VBD cried))

)

Great, an unambiguous parse!



Parsing – ambiguity 

test_sent = "It should never be the watery pizza"

tokenized = nltk.word_tokenize(test_sent)

parser = nltk.ChartParser(exercise_grammar)
trees = parser.parse(tokenized)

# Iterate through possible trees
for tree in trees:

print(tree)



Output
(S

(NP (PRP It))
(VP

(MD should)
(RB never)
(VB be)
(NP (DT the) (ADJP (JJ watery)) (NN pizza))))

(S
(NP (PRP It))
(VP

(MD should)
(RB never)
(VB be)
(NP (DT the) (JJ watery) (NN pizza))))



Output
(S
(NP (PRP It))
(VP
(MD should)
(VP
(RB never)
(VP (VB be) (NP (DT the) (ADJP (JJ watery)) (NN pizza))))))

(S
(NP (PRP It))
(VP
(MD should)
(VP (RB never) (VP (VB be) (NP (DT the) (JJ watery) (NN 

pizza))))))



Homework – for Wednesday, Nov. 24

 Add rules so that the following sentences are parsed:
• It is not their home
• They are very watery
• I was calling on the phone
Transition rules could be missing and words could be missing!

 Prevent the variable VP and ADJ problems so the ‘pizza’ sentence is 
unambiguous like this:

(S
(NP (PRP It))
(VP

(MD should)
(VP

(RB never)
(VP (VB be) (NP (DT the) (ADJP (JJ watery)) (NN pizza))))))



Homework
 How to submit:

• Edit the script to add your rules directly
• You can make life easier for us by doing:
 grammar_string == """

…
VB -> "go"
SENT -> "."
"""

grammar_string += "S -> SENT“

 Note: NLTK will not accept “$” in a category symbol, so use 
PRPS for “their”



Homework

How to submit:
• Add test sentences and repeat this code chunk for each 

sentence you should parse – test your code!

…
test_sent3 = "I was calling on the phone"

tokenized = nltk.word_tokenize(test_sent3)

trees = parser.parse(tokenized)

for tree in trees:
print(tree)



Parsing from scratch

NLTK’s rule based parser is nice
But:

• We want to be able to learn grammars from corpora

• We want to know how this works!

Let’s take a look at the CKY algorithm!
• Download and debug code/parsing/cky_simple.py



CKY algorithm
token_table = []
# Make an empty table
for i in range(len(tokens)):

# Add a row
token_table.append(["0"])
for j in range(len(tokens)):

# Add columns
token_table[i].append("--")

for i in range(len(tokens)):
token_table[i][i+1] = tagged[i][1]



CKY algorithm
text = "the cat ate the mouse"
tokens = word_tokenize(text)
tagged = pos_tag(tokens)

rev_grammar = {}
rev_grammar[("DT","NN")] = "NP"
rev_grammar[("VB","NP")] = "VP"
rev_grammar[("NP","VP")] = "S"

full_table = cky(token_table, tokens, rev_grammar)

for row in full_table:
print(row)



CKY algorithm
def cky(table, tokens, rev_grammar):

for span in range(2, len(tokens)+1):
for start in range(len(tokens)+1-span): # Go down diagonal

end = start + span
for mid in range(start+1, end):

node1, node2 = table[start][mid], table[mid][end]
if (node1, node2) in rev_grammar:

table[start][end] = rev_grammar[(node1, node2)]
return table



Choosing the right parse

All an algorithm like CKY does for us so far is 
check for possible positions to split into 
phrases
• Useful in many contexts (CKY can be applied to Chinese 

word segmentation! Qian & Liu 2012)

• Genome mapping (see Poptsova 2014)

• …

How can we decide which parse is right?


