
LING-362

Introduction to
Natural Language Processing

From n-grams to perplexity

Reminders

tuples: (165,56,102) tuple([4,5])
 lists: [165,56,102] list((4,5))
dictionaries: {"height":165, "weight":56}
range():

for i in range(10): # Loop i from 0 to 9

…

list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Homework

Due Friday, October 22
Longer project - improve the n-gram generator

• Remember extra credit is totally optional!

• If you want to try using TreebankWordDetokenizer,
many usage examples online:
https://stackoverflow.com/questions/21948019/pytho
n-untokenize-a-sentence

https://stackoverflow.com/questions/21948019/python-untokenize-a-sentence

What if we don’t like Dickens?

these changes into our other midmarket power
forms . Thanks again for your help on this . Carol
St. Clair EB 3889 713-853-3989 (Phone) 713-
646-3393 (Fax) carol.st.clair @ enron.com All ,
Please see the attached Interconnect Agreement
with Questar . Transwestern will own and
operate the interconnect . Questar may be able
to purchase material , but some of

Spot the genre (bonus – gram?)

Furies , and I 'll be as good as my word ; but
speciously for Master Fenton . Well , on went he
for a search , and away went I for foul clothes .
But mark the sequel , Master Brook-I suffered
the pangs of three several deaths : first , an
intolerable fright to be detected with a jealous
rotten bell-wether

More about language models

For predictive modeling of language, n-gram
models can be very effective

We can calculate the probability of any
sequence of words, given training data:

P(w1,w2 … wk) = P(w1)*P(w2|w1)*P(w3|w1,w2)…

=ෑ

𝑘=1

𝑛

𝑃 𝑤𝑘|𝑤1…𝑤𝑘−1

How good will our model be?

To measure the quality of a model, we'd like to
know how well it fits a certain data set

What kind of language is easy to model?
• If the language we are modeling has only one word, it's

perfectly predictable:
 Spam spam spam spam spam ….

• If it has 1,000,000 different equiprobable words, it's
very hard to model

• If it has 1,000,000 different words but…
 Spam spam spam spam spam furry spam

How good will our model be?

How can we measure this predictability?
We can use a given model to assign a

probability to some data
• We know how to get P(w1,w2, … wn)

• As we use the chain rule, the probability will get very
small (each multiplication creates a tiny fraction)

• We take the -Nth root for N such multiplications – this
is a measure called…

Perplexity

For many purposes, we will want to know
what the likelihood of a sequence of tokens is:
• Evaluate likelihood of suggested machine translation
• Recognize text type (does this look like a newspaper

article?)
• Recognize dialect/variety/non-native language
• Predict performance in domain adaptation
• … and much more

We need to measure how ‘surprising’ a text is
given some training data for comparison

Perplexity (PP)

Measured in general:

For a bigram model:

For a trigram model:

𝑃𝑃 𝑡𝑒𝑥𝑡 =
𝑁 1

𝑃(𝑤1…𝑤𝑁)

𝑃𝑃 𝑡𝑒𝑥𝑡 =
𝑁

ෑ

𝑖=1

𝑁
1

𝑃(𝑤𝑖|𝑤𝑖−1)

𝑃𝑃 𝑡𝑒𝑥𝑡 =
𝑁

ෑ

𝑖=1

𝑁
1

𝑃 𝑤𝑖 𝑤𝑖−1 𝑃(𝑤𝑖−1|𝑤𝑖−2)

Perplexity (PP)

Example: spam language

• PP(spam*10) =
10 1

1∗1∗..∗1
= 1

Example: million word language

• PP(a,b,c..j)=
10 1

0.0000001∗..0.0000001
= 1000000

Example: furry spam language

• PP(spam..furry,spam)=
10 1

0.999∗..0.0000001∗0.999
=3.98

Quick exercise – make up a text

Can you make up a sentence that is:
• Bad English but rates low on perplexity
• Good English but rates high on perplexity

 For this text, using A. unigrams B. bigrams:
If you go out in the woods today
You're sure of a big surprise.
If you go out in the woods today
You'd better go in disguise.

For every bear that ever there was
Will gather there for certain, because
Today's the day the teddy bears have their picnic.

Unigram example

Good English, high model perplexity:
• When I venture into the forest tonight

I’ll be very surprised…

Bad English, low perplexity:
• If bears woods picnic you you you today woods…

Bigram example

Good English, high model perplexity:
• Had I gone strolling through the forest I should have

worn a disguise

Bad English, low perplexity:
• You’d better a big surprise if you sure of a disguise. the

woods today’s the day the woods today

Can we always know P(wi)?

A problem with perplexity (and language
models in general) is knowing P(wi)

Words can be formed productively:
• dancerliness

• slacktivism

• …

These words are out-of-data or out-of-
vocabulary ("OOV" words)
?? How can we assign them a probability ??

𝑃𝑃 𝑡𝑒𝑥𝑡 =
𝑁

ෑ

𝑖=1

𝑁
1

𝑃(𝑤𝑖|𝑤𝑖−1)

Smoothing

We can assign some small frequency to each
word in the text we're evaluating

 Simplest option: add 1
This is called: Laplace Smoothing

• Pro: very simple to do
• Con: overestimates OOV items –
 in reality the likelihood of any particular OOV item is not half that

of an item that occurs once (1+1 = 2*1)
 error is compounded in n-gram models (each OOV item has

likelihood of combining with other items…)

we can take another small number (δ smoothing),
but which?

Smoothing

A better entry-level smoothing algorithm is to
estimate the likelihood of rare items
• How often does a new item occur?

➢Every time a new item comes along, it's unique – a
hapax legomenon (Greek: said once)

➢To estimate the likelihood of a 'surprise' we can check
how often we were surprised in the past

Smoothing

Good-Turing Discounting:
• Likelihood of each OOV item = hapax / N

• Similar insights in productivity studies (Baayen 2009) –
likelihood of novel word formation

To smooth, we first check how many unique
items are in the training data / data size
• Assign this small fraction to each OOV item we meet in

the test data

• Discount the probability of other data so that sum is 1

How to get perplexity in practice?

We will need:
• Some training data again, to base our model on

• Some test data to calculate perplexity for

• Calculate probabilities for all possible training
sequences

• Assign probabilities for product of text occurrences

• Add smoothing in unknown cases

Perplexity – training data

import nltk

Some data to make a model out of
We can read this from a file too!
text = """Mary had a little lamb,
His fleece was white as snow,
And everywhere that Mary went,
The lamb was sure to go.
… ."""

tokens = nltk.word_tokenize(text)

Perplexity – a unigram model
def unigram(tokens):

Token list in, model out…

model = {}
for tok in tokens:

Check if we've seen this token before
if tok in model: # If we have, increase it's frequency by 1

model[tok] += 1
else: # If we haven't, assign a frequency of 1

model[tok] = 1

for word in model:

Normalize probabilities so they sum up to 1
model[word] = model[word]/float(len(model)) # Python 2 compat.

return model

Perplexity – computing
def compute_perplexity(data, model):

data = data.split() # or: nltk.word_tokenize(data)
perplexity = 1 # Initialize value: starting is P = 1
N = 0
for word in data:

N += 1
if word not in model:

model[word] = 0.00001 # Rudimentary delta smoothing
perplexity = perplexity * (1/model[word])

perplexity = perplexity ** (1/float(N)) # ** means power
return perplexity

Perplexity – real examples
text_lamb = "a little lamb had Mary"
text1 = "This is a story about a lamb with white fleece who went to
school."
text2 = "On the other hand if we just talk about cheeseburgers etc. the
model will be more perplexed!"
text3 = "Mais si on n'a pas des mots anglais c'est plus mauvais"

model = unigram(tokens)
print("All vocab in: " + str(compute_perplexity(text_lamb, model)))
print("Some vocab overlap: " + str(compute_perplexity(text1, model)))
print("Same language: " + str(compute_perplexity(text2, model)))
print("French: " + str(compute_perplexity(text3, model)))

Perplexity – real examples
Output:

All vocab in: 50.30355571200591

Some vocab overlap: 1566.5144025293434

Same language: 24869.156857706537

French: 99999.99999999993

Further reading

This was a brief introduction to ngram models:
• We can calculate probabilities for higher order models

(bigram, trigram, n-gram model)
• Our code could do better smoothing (Good-Turing…)
• For n-grams, we can use shorter grams if longer ones

are OOV (a.k.a. backoff models), or incorporate
weights from all attested n-gram lengths
(interpolation)

• Use variable length n-grams

➢ Recommended reading: Jurafsky & Martin
(2017, C4 – [at least] pages 1-16)

Contemporary language models

N-gram models were (and are) used for a long
time, give reasonable results with small datasets

But it’s 2021 and we need to talk about Neural
Networks…
• Reliance on machine learning to find best model
• Deep Learning architectures allow special conditions to be

learned for huge numbers of interacting features – not just
last 2 words

• Numerical representation of words allows defaulting to
‘similar’ words

• Memory based architectures let the computer ‘remember’
having seen something to trigger different behavior

• Use of attention weights to prioritize different cues

Contemporary language models

 Our discussion will be necessarily shallow
 Theoretical overview available in Jurafsky &

Martin (2017, C7)
 For more with practical examples in Python I

recommend working through:
• Hands-on Machine Learning with Scikit-Learn and

TensorFlow / A. Geron
• https://github.com/ageron/handson-ml

 For grad students especially: consider more
advanced ML courses (LING-504 in spring)

https://github.com/ageron/handson-ml

Feed forward networks

Basic neural networks:
• Take a bunch of inputs
• Activate ‘synapses’
• Propagate activation forward
• Fire some output

 Input and output can be
anything

Word example:
• Input: the
• Output: cat

28

I saw the cat on
the mat…

Back-propagation

How do they learn?
• Whenever the output is

wrong we apply a cost
to all activating inputs

• Propagate back in the
network

• Weights are modified

Word example:
• Input: the

• Output: the -> all active input links to the are penalized

29

Gradient descent

How can we find the best
weights?
• Make fewest mistakes
• Track derivative of cost

(loss function)
• If cost is getting less, all

is well
• If cost is getting higher,

correct in other direction,
until network converges
on a minimal error

30

Is this a glorified lookup table?

Although neural networks are very impressive,
they are only as good as input/output features
• Mapping words to words is not that amazing

• Getting from words to sentences is still a problem

• Many words will be OOV (out of vocabulary)

State of the art neural LMs use many tricks to
solve these problems

31

Vector space models / embeddings

Co-occurrence
frequencies (or
transformations
thereof) make a
vector space

Allows similarity
metrics for words
and documents

Models of meaning
based on neighboring
words

 0 2 4 6 8 10
 0

 2
 4

 6
 8

1
0

 0

 2

 4

 6

 8

10

navy

is
la

n
d

fl
o
ri
d
a

beach=[6,7,9]

ship=[4,8,5]

Applications

Projecting vectors to lower dimensions
• Reveal systematic relationships

• Word level similarity

Word2Vec

LING-504 ML for Linguistics / Amir Zeldes
34

Don’t count, predict! (see Baroni et al. 2014)

Image: mccormickml.com

Fine grained meaning

Vector Space Models can also be used to
represent word meaning:
• Approaches to Distributional Semantics (Harris 1954)
• The meaning of a word is its usage in the language

(Wittgenstein 1953)
• You shall know a word by the company it keeps (Firth 1957)

➢ We now have the data and computing power to
realize this

➢ Recommended advanced readings:
Baroni & Zamparelli 2010, Bruni et al. 2012,
Baroni et al. 2014

Word2Vec

 Implementation of distributional semantics
(Mikolov et al. 2013)
• Use a window of ±2 tokens

• Track co-occurrence of target word with its nearest
neighbors

• Vector space as a matrix of each word vs. its potential
neighbors:
 cactus – Christmas : close to no co-occurrences in window

 Queen – England: many co-occurrences

Skip-gram model

Train a neural network to use target word
vectors to predict context words
• Problem re-dressed as a binary classification task

• For some candidate word: is it a neighbor of our word
or not?
 Mix positive examples: Queen -> England? YES

 And negative ones: Queen -> curry? NO

• Alter the input vector representation as a result

Final vectors can be used to rank similarity

Is there one answer?

What would you expect the vector space to
tell you?
• Most similar word to: Android

• lemon is to orange as apple is to …?

• Which is different?
lemon orange apple cucumber

Try the demo here:
• http://rare-technologies.com/word2vec-tutorial/

http://rare-technologies.com/word2vec-tutorial/

Despite some weaknesses…

Word vectors or embeddings are a very
potent tool
• Relatively easy to get and use
• Unparalleled access to arbitrary word meaning
• Very good at getting similarity in some contexts
• State of the art for dealing with ‘OOV’ items

(Chen & Manning 2014) – as long as they’re not OOV in
the corpus used to train embeddings

• Allows context to compensate for missing terms (esp.
recent architectures, e.g. ELMo, BERT – Peters et al.
2018, Devlin et al. 2018)

