LING-362

Introduction to
Natural Language Processing

Questions from last time

Quick review

® Math:
o4 +3
° 5 % %k 2
@ Variable type conversions:
e int(4.0) > 4
e float(4) 2 4.0
o str(4) = "4"

Quick review

® Strings:
e "hello" +" " + "world"
'hello world'
o "bye" * 2
'byebye’
+ "bye"[0]
b
* "bye"[-1]

e
e "bye"[0:-1]

Quick review

® Booleans:
e6>5
True
S5 ==
False

NLTK - a quick taste

® With the resources installed, we can play with some texts:

>>> from nltk.book import *

*** Introductory Examples for the NLTK Book ***
Loading text], ..., text9 and sent], ..., sent9

Type the name of the text or sentence to view it.

Type:
textl:
text2:
text3:
text4:
text5:
text6:
text7:
text8:
text9:

'texts()' or 'sents()’ to list the materials.

Moby Dick by Herman Melville 1851

Sense and Sensibility by Jane Austen 1811

The Book of Genesis

Inaugural Address Corpus

Chat Corpus

Monty Python and the Holy Grail

Wall Street Journal

Personals Corpus

The Man Who Was Thursday by G . K. Chesterton 1908

Imports

® You can import an installed library like this:
>>> import nltk

>>> nltk. version
'3.6.2'

® We can also import contents of specific

submodules:
>>> from nltk.book import *

Imports

® Or even specific objects and functions:
>>> from nltk.book import textl
>>> print(textl.name)
'Moby Dick by Herman Melville 1851"
>>> print(text2.name)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'text2' is not defined

NLTK - a quick taste

® What are these texts we’re importing?
e Objects of the type or Class Text

e A 'customized' data type — we will learn a lot about
these

e Objects represent encapsulated, somewhat
autonomous pieces of code with specified functionality

® Objects have:

* Properties or attributes textl.name
e Functions or methods textl.concordance("ship")

self
@ t+1 o t+2 @
|

Methods and arguments

>>> textl.concordance("harpoon",10,10)
Displaying 10 of 76 matches:

risk a harpoon

And that harpoon

a tall harpoon

>>> text1l.concordance("harpoon",lines=100)

Displaying 76 of 76 matches:

hen they were nigh enough to risk a harpoon from the bowsprit ? Now having a ni
n a sunrise and a sunset . And that harpoon -- so like a corkscrew now -- was f
over the fire - place, and a tall harpoon standing at the head of the bed . B

First notions about OOP

® A major line of thought for Object Oriented
Programming (OOP)
e Objects are encapsulated
e They do their job and expose methods
e We don't know (and don't want to know) how
® Advantages:

e Others can import our objects without studying our
code

e Possible to improve our objects without altering their
interface to the outside

self
(3

@ - o - @
|-

Procedural vs. OOP

® Our Greek perfect program is an example of a

procedural program (procedural # OOP)
e Functions or 'procedures' run in sequence
e Not bundled into opaque 'objects’

® What kind of object would we use to contain
our Greek verb?
 What properties would the object have?
e How would we get the perfect / present form?
e What else could it do?

self
@ t+1 o t+2 @
=

Procedural vs. OOP

® Bonus exercise: (intermediate pythonistas!)
e Look at greek _perfect _object.py in Canvas
®This is a toy implementation of a GreekVerb
class (a custom data type for Greek verbs!)
e There are a lot of things here we haven’t learned yet...
e Try stepping through the code in the debugger
® Point for further thinking:
e This is a lot more code than greek.py
e Why is this useful? Is it worth it?

self
(3

@ - o - @
|-

Another example: .similar(word)

® The Class Text has a similar function with the
signature: .similar(word, num=20)
@ It gives you num distributionally similar words
e How?
e Who cares: The Text Class takes care of this for us

e |f we have a better method to do this next week, we'll
release a new version of the Text Class

» This is nice and correct in principle... but stay
vigilant!

self
@ t+1 o t+2 @
=

Another example: .similar(word)

>>> textl.similar("boat",num=4)
whale ship head sea

>>> textl.similar("Ahab",num=4)

it he that queequeg

>>> textl.similar("crew",num=4)
whale ship head boat

>>> textl.similar("harpoon",num=4)
whale boat ship sea

A (slightly) more serious program

® For our next exercise, we will build a program

to check whether our input is a palindrome:
e dud
e kayak

® Or not:
e bud
e magic

self
(3

@ - o - @
[

Palindrome checker

® Thinking about input and output:

e IN: a string of characters

e OUT:

An answer in English (String)
True or False (Boolean)

~ Some starter code - if

test = "kayak"

Ideally we'd want something like this:
if test_is_a_palindrome:

print("The input

+ test + "' is a palindrome")

else:

print("The input ™ + test + "' is not a palindrome")

We need to learn more...

self
@ t+1 o 12
e

y

A word about indentation

® To know what to do 'only if X' Python uses
indentation:

Xx=5 # Not indented, always do this part

y =user_input # Also not indented

if x>y: # Not indented, since this check always happens
print("it's bigger!") # This is indented — only do if x>y

® In other words, indentation determines the
scope of the if statement

self
@ t+1 o 12

[f, else and elif

® You can also test multiple alternatives:

X=5
y = user_input
if x>vy:

print("it's bigger!")
elif x<y:

print("it's smaller!")
else:

print("it's the same!")

| =

Quick exercise - imagine it's snowing!

® Hurray! Snow!!
® What will this code print?

snow_inches =40
campus_open_max =55
tomorrow_min =10
tomorrow_max = 20

if snow_inches + tomorrow_max < campus_open_max:
print("campus will definitely be open")

elif snow_inches + tomorrow_min < campus_open_max:
print("campus might be open")

else:
print("campus will definitely be closed")

self
@ t+1 o t+2

Another word about indentation

® Python accepts two ways of indenting:

e Initial spaces, often 4 (sometimes 2 are used)
e Tabs

® PEP8 recommends 4 spaces
® But many developers use tabs (esp. outside US)
@ | will accept either, but no mixing!

> What is PEP?

self
(3

@ - o - @
[

Conventions and names

@It is a good idea to use informative names for
variables and functions

® To document your code inside your scripts
e Helps others work with your code
e Helps you to remember what you were doing
e Allows creation of automatic documentation
® High quality code is easy to maintain — but
what conventions should we use?

self
(3

@ - o - @
|-

PEP ptﬂ@ﬂ

® Python is developed using the Python
Enhancement Proposal (PEP) process

e Enhancements to the language in newer versions
(e.g. adding new operators, built in functions...)

e Various recommendations
® Crucial for maintaining readable code:

e PEP 0008: Style Guide for Python Code
https://www.python.org/dev/peps/pep-0008/

e PyCharm automatically checks PEP8 compliance
e We will follow PEP8 in our assignments

self
@ t+1 o t+2 @
|

https://www.python.org/dev/peps/pep-0008/

Some PEPS8 basics pgthon

® Variables and functions should have
informative, lower case names:

e / word_count Xwdct
e / find_nouns() Xfindnn(), FindNouns()

® White space around operators:

v count = previous + 1
X count=previous+1
@ Line length should be 79 characters maximum

® Nice overview:
https://realpython.com/python-pep8/

S
[y
O SmOu O
e

https://realpython.com/python-pep8/

Indentation and hierarchy

® Note that indentation is hierarchical:

if x>vy: # Not indented, always happens,
ifx>y*2: # Indented, happens if x>y
—print("it's a lot bigger!") # Indented twice!
else:

——print("it's a bit bigger") # Indented twice!
else:

—print("it's smaller")

Exercise - checking things

® Suppose we have a variable my name, which holds a
name
® We want to guess gender based on the name and use a
very simple heuristic:
e Name ends in -a: gender_guess = "F"
e Otherwise: gender_guess = "M"

® How would the code look to check
my_name with the value "Linda"?
e Remember how to look up the last character in a string...
e Remember the difference between = and ==
e (Solution also in Canvas)

@ - o - @

[

Checking things

my_name = "Linda"
if my _namel[-1] =="a":

gender _guess ="F"

print("ends in -a, probably female")
else:

gender_guess ="M

print("does not end in -a, guess male")

How can we check the palindrome?

@ If something is a palindrome, then it is
identical to its reverse

® How can we reverse a string?
>>> 'hello world'[::-1]
'dirow olleh'

>>>
>>>

' Full palindrome checker V1

test = "kayak"

Get the reverse of the input string
reversed_test = test[::-1]

if test == reversed_test:
+ test +

print("The input is a palindrome")

else:

print("The input '" + test + "' is not a palindrome")

How to give our program parameters?

® Changing the variable test in code every time
you want to check input is not an option

® Users must be able to run the program
without altering code

® We need input parameters or 'arguments’

Unnamed arguments

® When we run a Python script from the command
line we can get anything written after the script
name like this:

Command line terminal:
> python my_script.py argl arg2 arg3

Script:
import sys
print(sys.argv)

Output:
['my_script.py’, 'argl’, 'arg2’, 'arg3’|

self
@ t+1 o t+2 @

[

Unnamed arguments

® But there is no structure to these:
['test.py’, 'argl’, 'arg2’, 'arg3']

e They don't have names

e Must be in a specific order

e Must all be present

e No helpful message for the user what input is allowed
e We could make a better way... or import one!

Building block: argparser

import argparse
parser = argparse.ArgumentParser()

parser.add_argument('-i’, '--input’, default="kayak", help="text

to check")

options = parser.parse_args()

word_to_test = options.input

argparser — other options

Unnamed, mandatory positional argument

parser.add_argument("filename"”, help="file to process")

options = parser.parse_args()

filename = options.filename

/

argparser — other options

Boolean options (neater than saving ‘yes’ or ‘true’
Compare:

parser.add_argument("--parse”,"-p", actioni|"store_true",

help="file to process")
parser.add_argument("--doparse”,"-d", action="store",
default="yes",help="file to process")

options = parser.parse_args()

if options.parse:

if options.doparse == "yes":

o self
@ t+1 o 12

argparser - help

> python heb pipe.py -h
usage: python heb pipe.py [OPTIONS] files

positional arguments:
files File name/pattern of files to process (e.g. *.txt)

optional arguments:

_h,

--help show this help message and exit

standard module options:

-w, --whitespace Perform white-space based tokenization

-t, --tokenize Tokenize word forms into morphological segments
-p, —--pos Do POS tagging

-1, --lemma Do lemmatization

-m, --morph Do morphological tagging

-d, --dependencies Parse with dependency parser

-e, —--entities Add entity spans and types

-c, —--coref Add coreference annotations

-s {auto,none}, --sent {auto,none}

XML tag to split sentences, e.g. sent for <sent
(otherwise automatic sentence splitting)

.>

Homework - due next Wednesday

® You will find the rudimentary palindrome.py in
Canvas

e In the comments you will find 4 tasks:
Add 2 parameters for input and True/False output mode
Add handling for capitalization
Add handling for spaces in input
e The comments will guide you and provide some
sample inputs
If your inputs go through correctly — all is well!
If not — try debugging in PyCharm first!
Ask Janet and me for help, and come to office hours!

self
@ t+1 o t+2 @
|

