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The PTB tag set (vanilla)
CC Coordinating conjunction   
CD Cardinal number   
DT Determiner    
EX Existential there   
FW Foreign word   
IN Preposition or conjunction 
JJ Adjective    

JJR Adjective, comparative   

JJS Adjective, superlative   
LS List item marker  
MD Modal    

NN Noun, singular or mass    
NNS Noun, plural   

NNP Proper noun, singular  

NNPS Proper noun, plural  
PDT Predeterminer    
POS Possessive ending   
PRP Personal pronoun   

PRP$ Possessive pronoun   
RB Adverb    

RBR Adverb, comparative   

RBS Adverb, superlative   
RP Particle    
SYM Symbol    
TO to    
UH Interjection    
VB Verb, base form  
VBD Verb, past tense  
VBG Verb, gerund or present participle
VBN Verb, past participle  
VBP Verb, non-3rd person sg. present
VBZ Verb, 3rd person sg. present

WDT Wh-determiner    
WP Wh-pronoun    

WP$ Possessive wh-pronoun   
WRB Wh-adverb    
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Tagging exercise

 Is ISIS Going Broke?
• Solution in Canvas
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The PTB tag set

There is a lot to be said about the PTB tag set
• Successes and shortcomings

• Extensions since its inception – notably through the 
AMALGAM project (2001), TreeTagger, OntoNotes, 
English Web Treebank…

We don't have time to discuss these…
For this course: PTB (a.k.a. vanilla PTB) will be 

our only tag set for English (more: LING-367)
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How does a POS tagger work?

To decide what POS tags to assign, an 
automatic tagger consults training data
• Known POS distributions

• Known conditional probabilities P(POS2|POS1)

• …

We can get initial probabilities for a single 
word… 
• but the tagger can also continue a plausible sequence

• First let’s see what we can do with a tagger using NLTK
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Tagging with NLTK – tagging.py
import nltk
text = "Mr. Pickwick turned azure."

# Get a list of tokens
tokenized = nltk.word_tokenize(text)

# Make it a list of (token, pos) tuples
tagged = nltk.pos_tag(tokenized)

print(tagged)
# Note the error!

[('Mr.', 'NNP'), ('Pickwick', 'NNP'), ('turned', 'VBD'), 
('azure', 'NN'), ('.', '.')]
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What can we do with ‘tagged’?

Tagged data is a list of tuples
Can be separated into two lists for processing 

just tags:

words = []
tags = []
for word, tag in tagged:

words.append(word)
tags.append(tag)
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Inspecting frequencies

tag_dist = nltk.FreqDist(tags)
word_dist = nltk.FreqDist(words)
print(tag_dist.most_common(4))
print(word_dist.most_common(100)[90:])
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And plotting
 To plot you must install Matplotlib and NumPy from the 

command line:
> pip install numpy
> pip install matplotlib

 Then in Python:

word_dist.plot(50)

word_dist.plot(50, cumulative=True)
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Tagged data from nltk

You can also get some ready corpora from 
NLTK:
from nltk.corpus import masc_tagged

words = []
tags = []
for word, tag in masc_tagged.tagged_words():

words.append(word)
tags.append(tag)
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Homework – for Monday, Nov 8

Write a program that:
• Takes a text file input

• Tokenizes and tags the text with NLTK

• Goes through the result and saves only common nouns

• Prints the most frequent 10

• Plots the top 100 using nltk’s FreqDist

Run your program on some text
 Find one word mistagged as a noun and write as a 

comment – why do you think this happened?
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Exercise – verb proportions

Try to get the proportion of verbs in some text:
• Read a text file saved from the Web
• Tokenize and tag it
• Loop through data and get:
 Length in tokens

 Amount of verbs

 Print proportions with a verbal tag using one of:
if tag in ["VB","VBZ",...]:

…

if re.match(r'V.*', tag) is not None:

…

if tag.startswith("V"):
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We can also get this by sentence

import argparse
from nltk import word_tokenize, pos_tag, 
sent_tokenize
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We can also get this by sentence

parser = argparse.ArgumentParser()
parser.add_argument("file")
options = parser.parse_args()

with open(options.file, 'r') as f:
text = f.read()

sentences = sent_tokenize(text)
sent_num = 0
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We can also get this by sentence
for sentence in sentences:

tokens = nltk.word_tokenize(sentence)
tagged = nltk.pos_tag(tokens)
length = len(tokens)
verbs = 0
sent_num += 1
for token, tag in tagged:

if tag.startswith('V'):
verbs += 1

print("Verb ratio for S" + str(sent_num) + ": " +   
str(float(verbs)/length))
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How does tagging work?

Why did NLTK mis-tag azure?
 It seems the following is probably true in 

NLTK’s training data:
• Known POS distributions: P(NN) > P(JJ)
• Conditional probabilities: 

P(NN|NNP,VBD) > P(JJ|NNP,VBD)
• …

But how does NLTK know that azure was 
preceded by VBD+NNP???
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HMMs

An HMM is really a weighted FSA
The HMM definition comprises:

• V = v1 … vV # input vocabulary items

• Q = q1, … qN (q0,qF) # states

• A = a11,a12 … an1 … ann # transition prob. matrix

• O = <o1, …, oT> # ordered observations of V

• B = bi(ot) # prob. of ot given qi

# a.k.a ‘emission’ probs.
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HMMs – formal definition

Transition probabilities (A): 
(adapted from Jurafsky & Martin)

P(VB|TO) = 0.83 (rows give the condition)

Q0 VB TO NN QF

Q0 -- 0.0004 0.0064 0.0365 0

VB -- 0.0038 0.035 0.047 0.012

TO -- 0.83 0 0.00047 0.00079

NN -- 0.0040 0.016 0.087 0.23

QF -- -- -- -- --
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HMMs – formal definition

Emission probabilities (B): 
(adapted from Jurafsky & Martin 2008)

P(see|VB) = 0.12 (assuming this is VB, chance to get 'see')

I want to see

VB 0 0.0093 0 0.12

TO 0 0 0.99 0

NN 0 0.000054 0 0.000007
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Where are we in the definition?

The POS tagging task maps directly to the 
HMM definition:
• V: words of the English language

• Q: the parts of speech (state: DT -> state: NN)

• A: probability of DT -> NN, … (Table A)

• B: probability P(the|DT), … (Table B)

• O: The observed text to be tagged <w1, …, wn>
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Using the chain

Given A and B, it’s not complicated to get the 
single next most probable tag

But…
• What if choosing that tag will lead us to very unlikely 

choices later on?

• What if choosing the second best one now is better in 
total?

➢Need to traverse multiple paths and remember 
probabilities – hard to do efficiently
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The Viterbi algorithm

Devised multiple times in parallel, including by 
Andrew Viterbi

Essential for POS tagging but also:
• Signal processing (cellphone signal decoding)

• DNA sequencing

• WiFi error correction

• … and much more

A special case of dynamic programming 
(contrast: greedy algorithm)

21



The Viterbi algorithm

What we’ll need for the algorithm:
• Table A: a dictionary of transition probablities

(somedict[DT][NN] -> probability of transition DT|NN)

• Table B: a dictionary of word|tag probabilities 
(otherdict[N][puppy] = 0.000034)

• State space (i.e. the tag set, list or tuple)

• Start probability dictionary for q0
(start[DT] = 0.1812)

0.000034

…
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Building table B – emit_p

We can write code to make sure we have a 
value for every possible item in a dictionary

But what about OOV items?
Example: p(dancerliness) = ??

• emit_p['NN']['dancerliness']

KeyError: 'dancerliness‘

Solvable using some if … :
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Building block: defaultdict

A better way is to have a dictionary that knows 
how to initialize unseen values 

Uses a default value if key is unknown:
• Should be initializable with a data type
• Or a function returning some value

from collections import defaultdict
my_dict = defaultdict(int)
print(my_dict["puppy"])
0
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Building block: defaultdict

How to return a specific value?
Suppose we want the default to be 0.5
 Instead of int, we can give a special function as 

the default:

# Suppose half_returner is a function, always returns 0.5

my_dict = defaultdict(half_returner)
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Building block: defaultdict

This is a little cumbersome, so a more Pythonic
way is this to use the anonymous function 
lambda:

my_dict = defaultdict(lambda: 0.5)

Same as:
# Suppose half_returner is a function, always returns 0.5
def half_returner():

return 0.5
my_dict = defaultdict(half_returner)
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Building block: defaultdict

And we can even make a defaultdict of 
defaultdicts:
• x = defaultdict(lambda: defaultdict(lambda: 0.00000001))

 Now x is a dictionary: 
• which defaults unknown entries to dictionaries
 which default unknown entries to 0.0000001..

➢ So what is the value of:
x["NN"]["puppy"] ?
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Viterbi - implementation

Download and debug 
tagging/viterbi_simple.py

 Imports and states:

from collections import defaultdict

# Tagger states Q (the tag set)
states = (',', 'CC', 'CD', 'DT', 'EX', 'IN', 'JJ', 'JJR', 'JJS', 'LS', 'MD', 'NN', 'NNP', 'NNPS', 
'NNS', 'PDT', 'PRP', 'PRP$', 'RB', 'RBR', 'RBS', 'SENT', 'SYM', 'TO', 'UH', 'VB', 'VBD', 
'VBG', 'VBP', 'VBZ', 'WDT', 'WP', 'WRB')



Viterbi – starting probabilities

Training data:
# q0 probabilities: 
# can't use prior tags to estimate initial state
start_p = {

',': 0.006,
'CC': 0.0451,
'CD': 0.0158,
'DT': 0.1365,
'EX': 0.0102,
…

}



Viterbi – transitional probabilities

Training data for transition is a dictionary:
trans_p ={}

We could set the transition probabilities by 
assigning nested dictionaries:

trans_p['DT'] = {'JJ': 0.0208, 'NN': 0.0397 …}

But these would be regular dictionaries, no 
default value for missing values



Viterbi - transitional probabilities

A better way:
trans_p = 
defaultdict(lambda: defaultdict(lambda: 0.00000001))

# Don’t make a new dictionary, 
# just update the defaultdict with new dictionary values

trans_p['DT'].update({'JJ': 0.0208, 'NN': 0.0397, …}

trans_p['IN'].update({',': 0.0015, 'CD': 0.0016, …}



Viterbi – emission probabilities 

emit_p = defaultdict(lambda: defaultdict(lambda: 
0.00000001))

emit_p['VB']['want'] = 0.0093
emit_p['VB']['fly'] = 0.0001

…



The algorithm 1/3
def viterbi(obs, states, start_p, trans_p, emit_p):

path = [{}] # The Viterbi path is a list of dicts mapping tok+tag to probability

# Get initial probabilities for each tag given first token (obs[0])
for tag in states:

path[0][tag] = start_p[tag]*emit_p[tag][obs[0]]



The algorithm 2/3
# Get subsequent probabilities for obs[t] where t > 0 (tokens after the first)
for tok_num in range(1, len(obs)):

path.append({})
backpointer = {}
for tag in states:

max_prob = 0.0
probs = []
for prev_tag in states:

probs.append(path[tok_num - 1][prev_tag] * trans_p[prev_tag][tag] * emit_p[tag][obs[tok_num]])
if prob > max_prob:

max_prob = prob
best_prev = prev_tag

path[tok_num][tag] = max_prob
backpointer[tag] = best_prev
backpath.append(backpointer)



The algorithm 3/3
optimal_list = []

# Go through each token position in path;
# Each token position is now a dictionary 
# of tags to continuation probabilities given previous context
current_best_tag = max(path[-1], key=path[-1].get)
optimal_list.append(current_best_tag)
backpath.reverse()
for backpointer in backpath:

optimal_list.append(backpointer[current_best_tag])
current_best_tag = backpointer[current_best_tag]

optimal_list.reverse()

# The highest probability
max_total_prob = max(path[-1].values())
print('Best sequence: ' + ' '.join(optimal_list) + ' with highest probability of ' + 
str(float(max_total_prob)))


