
LING-362

Introduction to
Natural Language Processing

From HMM to Sequence Labeling

Talk

Center for Language and Speech Processing
Seminar, Friday, November 12 at 12:00pm ET

Andrew Piper, McGill University

• “How Can We Use Machine Learning to Understand
Narration?”

• Zoom Link: https://wse.zoom.us/j/93327212503
• Sign In Sheet:

https://docs.google.com/spreadsheets/d/1-
2sEgxADpmp2jlCvlAb8m-
8VqccUneHtYK1zFGUqWAs/edit?usp=sharing

https://wse.zoom.us/j/93327212503
https://docs.google.com/spreadsheets/d/1-2sEgxADpmp2jlCvlAb8m-8VqccUneHtYK1zFGUqWAs/edit?usp=sharing

Notes about homework

Create same dictionaries for start/trans/emit
Create the state list from seen tags
Read a file line by line…
Check if lines have a tab…

• Split by tab
• Get POS and word columns
• Remember tag as prev_tag for transition…
• +=1 to relevant frequencies

Divide all dictionary values by sum of
dictionary so you get probabilities

Notes about homework

Suppose each key in mydict points to a dict of counts
Compute probabilities from sums and store in ‘probs’
probs = defaultdict(lambda: defaultdict(lambda: 0.0001))

for pos1 in mydict:
total = sum(mydict[pos1].values()) # sum values for this pos
for pos2 in mydict[pos1]:

freq = mydict[pos1][pos2]
probs[pos1][pos2] = freq/total

And similarly for emit_p!

start_p
*
emit_p

Brief review: Viterbi algorithm

I want to fly

PRP PRP PRP PRP

VBP VBP VBP VBP

TO TO TO TO

VB VB VB VB

trans_p *
emit_p *
prev_p

Backtrace

I want to fly

PRP PRP PRP PRP

VBP VBP VBP VBP

TO TO TO TO

VB VB VB VB

Best
outcome

From tagging to sequences

Part of speech labeling is a classic example of
token-wise tagging:
• Input is a sequence of words (tokens)
• Each word receives exactly one category
• There are usually no other features except words to

decide the correct tag

But not all labeling tasks are like this!
We could tag more complex sequences and

with more input features!

Sequence labeling – NER

A typical example is Named Entity Recognition
Not every token is labeled:

PER -- ORG --

• Kim visited Intel .

Labels come in spans:

PER PER -- ORG ORG

• Kim Jung visited Intel Corp.

How many spans?

 If we only use labels like PER and ORG, we can
treat this as an HMM/Viterbi problem
• Tags: PER, ORG, .., -- (‘--’ is a tag)

• Input: Kim, Jung, visited …

• Emission probabilities: P(Kim|PER), P(Intel|ORG)

• Transition probabilities: PER → --→ ORG → ORG

But how can we tell how many ORGs we have?
• Intel Corp. ORG ORG → 1 org., 2 tokens

• IBM Google lawsuit ORG ORG --→ 2 orgs!!

Solution: BIO encoding

We add more label types to indicate Beginning
and Inside of entities:
• IBM B-ORG

• Corp. I-ORG

• hired O

• Kim B-PER

• Jung I-PER

The label O is like our ‘--’: Outside any entity

Solution: BIO encoding

Labels impose restrictions on transitions:
• P(B-PER → I-PER) > p(I-PER → B-PER)

• P(O → I-PER) = 0 (why?)

We can still use HMM/Viterbi…
But is just one emission probability enough?

• P(PER|Kim) …

• What about other features?

Just one emission?

Many things influence the probability that a word
is a person/company name:
• Capitalization (very good at finding ‘O’)
• All caps? (ORG)
• Word length
• Knowledge bases (is this in a list of company

names? Place names?)
• …

Viterbi can only multiply feature probabilities
Not good for learning arbitrary feature

conjunctions (weighted features)

Using multiple features

 Ideally our input should look like this:
• IBM NNP allcaps … B-ORG

• Corp. NNP title … I-ORG

• hired VBD lower … O

• Kim NNP title … B-PER

• Jung NNP title … I-PER

Decoding - CRF

Efficient decoding over multiple weighted
features can be done using Conditional Random
Fields (CRF)

We do not have time to implement CRF in this
course

 For our purposes, a Linear Chain CRF is
• a sequence label decoder equivalent to a Viterbi decoder
• using multiple input features
• and arbitrary functions for features over the sequence

Advanced reading: Sutton & McCallum (2006) in
Canvas (optional!)

Decoding - CRF

For smaller datasets, CRF taggers can learn
joint discrete feature value distributions:
• Python library:
 pip install python-crfsuite (Okazaki 2007)

• Good off the shelf CRF tagger:
 Marmot (Müller et al. 2013; Java),

http://cistern.cis.lmu.de/marmot/

• CRF NER tagging example in Canvas:
 ner/crf_entities.py

http://cistern.cis.lmu.de/marmot/

Neural sequence labeling

Since features can be anything…
For larger datasets, we can use neural

networks
Word embeddings as features
What algorithm to use?

• Definitely not Viterbi: we don’t want the product of
probabilities that dimension 1 is…

• -> use CRF on neural network outputs!

Popular libraries

Flair (Akbik et al. 2019)

AllenNLP (Gardner et al. 2018)

NCRF++ (Yang & Zhang 2018)

Example – Flair (Akbik et al. 2019)

from flair.models import SequenceTagger

pretrained NER tagger
tagger = SequenceTagger.load('ner')

sentence = Sentence('George Washington went to Washington .')

predict NER tags
tagger.predict(sentence)

print sentence with predicted tags
print(sentence.to_tagged_string())

George <B-PER> Washington <E-PER> went to Washington <S-LOC> .

For training see:
https://github.com/flairNLP/flair/blob/master/resources/docs/TUTORIAL_7_TRAINING_A_MODEL.md

https://github.com/flairNLP/flair/blob/master/resources/docs/TUTORIAL_7_TRAINING_A_MODEL.md

From HMMs to syntax

We’ve already seen some simple ways of
dealing with syntax:
• Markov models capture surface properties of syntax
 N-grams (VMM): A lot of …

 HMM: DT JJ NN

From HMMs to syntax

We’ve already seen some simple ways of
dealing with syntax:
• Markov models capture surface properties of syntax
 N-grams (VMM): A lot of …

 HMM: DT JJ NN

• Finite-state methods build possible sequences
 Coptic:

 PREP -> ART -> NOUN

 AUX -> SUBJ -> V -> OBJ

Modelling syntax

Why isn’t it enough?
• FSAs and n-grams (weighted FSAs) have no memory
• No way to manage long distance dependencies:
 Pick up

the one we saw yesterday…

• Distance > n (for n-order Markov model)
• Unlimited embedding depth can exceed properties of

regular languages
• Sparse attestation can exceed learnability with realistic

(finite) unconstrained neural network

Languages and complexity

Regular languages are the simplest grammars
we can build:
• Include all finite languages (where we can enumerate

all expressions)

• Potential for infinite generation (a+)

• Optional or empty elements (ab?, ab*)

• (Regular languages without the latter are also called
'star-free')

Beyond regular languages

What if we want to name a+b something else?
• We could do things like: (DT+JJ+N)=NP: NP+…

• This is still a regular language (can use FSA)

• Even some recursion is OK:
 x -> x

 un + adj -> adj

Are there constructions that can’t be
expressed using regular grammars?

Example: center-embedding

 In English we can center-embed relative clauses:
• The boy laughed

• The boy the cat bit laughed

 Structure:
• S > NP VP

• S > NP S VP → NP NP VP VP

We can potentially continue to center-embed…
• Result:

utterances of the type NPn VPn (or generally anbn)

Another example

 Less famous – Semitic embedded compound
modifiers:
• [bat [melex ‘ašir] yafa]

daughter king rich.M beautiful.F

Beautiful daughter of a rich king

• [bat [melex [‘am gadol] ‘ašir] yafa]
daughter king people great.M rich.M beautiful.F

Beautiful daughter of a rich king of a great people

➢ Note that agreement information must match
➢ Memory: Nn An with matching gender/number

The Chomsky Hierarchy

“self-embedding” categories:
• Are a feature of context free languages

• Allow us a sort of 'memory'

• Long thought to cover human grammars

Context free grammars (CFGs) occupy Type-2
of the Chomsky hierarchy (Chomsky 1956)

Type: 0

1

2

3
(Image: Wikimedia)

The limits of CFGs

Context free grammars allow rules of the form:
• α > β

• α is a non terminal symbol (hidden node: NP, VP, S …)

• β is any sequence of terminal or non-terminal symbols
(tokens or higher nodes)

Examples:
• S > NP VP (could still be regular)

• S > NP S VP (context free)

Are human languages more complex?

Some conceivable rules are not covered:
• We cannot ‘peek’ to limit application of a rule:
 S > NP S VP (OK)
 PP S PP > PP NP S VP PP (check for surrounding PPs: not OK)

Rules of this type are context-sensitive
• αAβ > αγβ

• We can prove that patterns of the type anbncn are
context-sensitive

• So are patterns like (abc …)n

Are human languages more complex?

There are few examples of context sensitive
structures in natural language

Famous example: Swiss German crossing
dependencies (Shieber 1985)

Image: wikimedia

Are human languages more complex?

There are few examples of context sensitive
structures in natural language

Famous example: Swiss German crossing
dependencies (Shieber 1985)

Image: wikimedia

Context Free Grammars

CFGs are nevertheless enough for most structures
and much more efficient to compute
• A context free grammar is a set of (de)composition rules

over a set of symbols:
 NP > DT NN

 NP > NNP

 DT > the

 NN > house

 NN > mouse

 …

• Symbols which do not decompose are called terminals
(often =tokens)

Context Free Grammars

The set of decomposition combinations
generates all utterances in the language L
modelled by the grammar

A starting symbol must be selected to
generate from; usually S

Context Free Grammars

Some example rules:
• S > NP VP
• VP > V NP
• VP > V
• V > eats
• NP > DT NN
• NN > mouse
• NN > house
• DT > the
• …

Now we can generate…

 (never minding meaning – à la 'colorless green
ideas…')

Exercise

Let’s try to extract context free rules from
sentences:
• Every sentence has S at the top

• Breaks down into phrases

• Phrases decompose into our POS tags/other phrases

• POS tags lead to tokens

Exercise

Example:
• They really go above and beyond!

Tag it first:
• PRP RB VBP RB CC RB .

So we have:
- RB > really
- VBP > go
…

What are the phrase structure rules?

Exercise

A possible analysis (English Web Treebank;
other analyses are possible!)

How can we write the rules?

Exercise

Break down the transitions:
• S > NP ADVP VP

• NP > PRP

• ADVP > RB

• VP > VBP ADVP

• ADVP > RB CC RB

