
LING-362

Introduction to
Natural Language Processing

Syntactic parsing

Languages and complexity

Regular languages are the simplest grammars
we can build:
• Include all finite languages (where we can enumerate

all expressions)

• Potential for infinite generation (a+)

• Optional or empty elements (ab?, ab*)

• (Regular languages without the latter are also called
'star-free')

Beyond regular languages

What if we want to name a+b something else?
• We could do things like: (DT+JJ+N)=NP: NP+…

• This is still a regular language (can use FSA)

• Even some recursion is OK:
 x -> x

 un + adj -> adj

Are there constructions that can’t be
expressed using regular grammars?

Example: center-embedding

 In English we can center-embed relative clauses:
• The boy laughed

• The boy the cat bit laughed

 Structure:
• S > NP VP

• S > NP S VP → NP NP VP VP

We can potentially continue to center-embed…
• Result:

utterances of the type NPn VPn (or generally anbn)

Another example

 Less famous – Semitic embedded compound
modifiers:
• [bat [melex ‘ašir] yafa]

daughter king rich.M beautiful.F

Beautiful daughter of a rich king

• [bat [melex [‘am gadol] ‘ašir] yafa]
daughter king people great.M rich.M beautiful.F

Beautiful daughter of a rich king of a great people

➢ Note that agreement information must match
➢ Memory: Nn An with matching gender/number

The Chomsky Hierarchy

“self-embedding” categories:
• Are a feature of context free languages

• Allow us a sort of 'memory'

• Long thought to cover human grammars

Context free grammars (CFGs) occupy Type-2
of the Chomsky hierarchy (Chomsky 1956)

Type: 0

1

2

3
(Image: Wikimedia)

The Chomsky Hierarchy

What level of complexity does human
language have?
• Regular grammar fits most morphologies
• Context Free Grammars are enough for most syntax
• Some constructions need more!

Context free grammars (CFGs) occupy Type-2:

Type: 0

1

2

3
(Image: Wikimedia)

Context sensitive example:

There are few examples of context sensitive
structures in natural language

Famous example: Swiss German crossing
dependencies (Shieber 1985)

Image: wikimedia

Context Free Grammars

CFGs are nevertheless enough for most structures
and much more efficient to compute
• A context free grammar is a set of (de)composition rules

over a set of symbols:
 NP > DT NN

 NP > NNP

 DT > the

 NN > house

 NN > mouse

 …

• Symbols which do not decompose are called terminals
(often =tokens)

Context Free Grammars

The set of decomposition combinations
generates all utterances in the language L
modelled by the grammar

A starting symbol must be selected to
generate from; usually S

Context Free Grammars

Some example rules:
• S > NP VP
• VP > V NP
• VP > V
• V > eats
• NP > DT NN
• NN > mouse
• NN > house
• DT > the
• …

Now we can generate…

 (never minding meaning – à la 'colorless green
ideas…')

Exercise

Let’s try to extract context free rules from
sentences:
• Every sentence has S at the top

• Breaks down into phrases

• Phrases decompose into our POS tags/other phrases

• POS tags lead to tokens

Exercise

Example:
• They really go above and beyond!

Tag it first:
• PRP RB VBP RB CC RB .

So we have lexical rules:
- RB > really
- VBP > go
…

What are the phrase structure rules?

Exercise

A possible analysis (English Web Treebank;
other analyses are possible!)

How can we write the rules?

Exercise

Break down the transitions:
• S > NP ADVP VP

• NP > PRP

• ADVP > RB

• VP > VBP ADVP

• ADVP > RB CC RB

Your turn!

Go to:
• https://corpling.uis.georgetown.edu/etherpad/p/cfg

Tag your assigned sentence
Add transition rules for the tags to your rules
Analyze syntax on paper
Add transition rules for the phrases

https://corpling.uis.georgetown.edu/etherpad/p/cfg

How do we prevent mistakes?

Note that if we use traditional V for verbs:
• S > NP VP
• VP > V NP
• NP > DT N
• V > bite
• N > dog
• N > boy

We can generate:
• The dog bite the boy

Where is agreement in our grammar?

Add more categories

You can now start to guess why these tags are
important:

• S >* … DT NN VBZ DT NN

• S >* … You VBP DT NN

How do we prevent mistakes 2?

What about specific participant patterns?
We call these subcategorization frames:

* Jack slept the cake
* Jill devoured

We can make special categories:
• VI > sleep
• VT > devour

➢In practice, this may not be needed (statistical parsing)

What’s wrong with this picture?

Aren’t trees supposed to be binary?

Actually, any n-ary tree can be turned into a
binary tree without loss of information
• Binarized trees are also called the CNF or

Chomsky Normal Form of the tree

• Ternary trees (or more) are a
matter of taste in NLP

CNF

Context Free Grammar - Definition

As a more formal definition, a CFG “G” is
defined as:
G ≡

N Set of non-terminal symbols

Σ Set of terminal symbols (not in N!)

R Set of rules of the form A → β
where A ∈ N, β ∈ (Σ∪N)*

S The designated start symbol

Great, but…

Can we really build a grammar of English
generating all possible sentences?
• “All grammars leak” (Sapir 1921):
 Carlson & Roeper (1980): prefixed verbs don't take PPs

 I want to overindulge in you (Sampson 2007)

• Not all "grammatical" structures are acceptable/occur:
Unlimited center embedding: S > NP S VP

 x1 :The boy the cat bit laughed

 x2: ?The boy the cat the dog licked bit laughed

 x3: *The boy the cat the dog the girl bought licked bit laughed

• "Usage" effects, e.g. the above are better with pronouns:
 The boy the cat I bought licked laughed

Great, but…

Can we really build a grammar of English
generating all possible sentences?
• Much discussion about graded grammaticality (is every

possible utterance really "in" or "out"?) – Sampson (2007)

• Overgeneration is a serious issue – each new rule predicts a
plethora of structures we will likely never see

• Hand crafting a grammar beyond NP > DT NP becomes
exponentially harder

➢ Can we get a set of rules based on actual usage?

Yes, we can!

Grammars can be induced from annotated
data just like in our exercise

 In some ways, a corpus of syntax trees –
a Treebank – is a grammar

How often do we need the rules inherent in:

Answer

S > NP VP (once)
VP > V NP (once)
NP > DT NN (twice)
DT > the (twice)
NN > mouse (once)
NN > house (once)

Saving probabilities

 It's easy to note how often each rule occurred,
• Saving this data gives us an idea of how likely each

decomposition is

• Maybe we do need a rule for:
 VP > V PP (overindulge in you)

 V > over+V (overindulge)

• But it's very rare/unlikely

Saving the probabilities gives us a
Probabilistic Context Free Grammar (PCFG)

How many rules?

Would we get a lot more rules than we could
come up with by hand?

The Penn Treebank Wall Street Journal corpus
contains about 1 million tokens

How many distinct non-lexical transition rules
does it contain (incl. POS)?

➢ ~17,500 (Jurafsky & Martin 2008:408)

Very nice, but…

So far we can only generate
• Make all possible utterances using rules from a

grammar or treebank

• We could build a ‘tree-chatbot’ ☺

 In NLP we are less interested in generating
• Random sentences are nice

• But we want to process actual sentences generated by
humans

• Gateway to Natural Language Understanding (NLU)

How can we recognize a parse?

 Is this an English sentence?
• The cat the dog the mouse licked bit ran

Two ways to check:
• Top down, we generate all possible sentences:
 S > NP S VP (twice)

 S > NP VP (once)

 …

 V > ran

• Did it appear in the list?

How can we recognize a parse?

 Is this an English sentence?
• The cat the dog the mouse licked bit ran

Two ways to check:
• Bottom up, we try to build phrases from words:
 DT > The : means we might have a DT here

 …

 NP > DT NN : means we might have an NP

 …

 S > NP VP : OK, we’ve reached start symbol, all good!

